
SYS-CON
PUBLICATIONS

JDJ Feature: Developing with DCOM & Java Rick Hightower
DCOM architecture and the JVM compared to CORBA and RMI 8

Benchmarking with an Abstract Class Steven Feuerstein
How to build a utility that can be used with ease and flexibility 26

JDJ Widget Factory: Text Controls by Swing Jim Crafton
Adding more features, and highlighting strings, comments and numbers 62

E-Java: Securing Java Commerce Ajit Sagar
Leveraging the technologies providing security in distributed systems 40

Part 2: An Online Airline Ticket Store Ajit Sagar

Using Java & ColdFusion
Working Together: A simple simulation of a real-life ticket agent 46

Java for Legacy Systems Scott Howard
Interfacing with legacy libraries using Remote Method Invocation 54

RMI: Pure Java Distributed Computing Christopher Lambert
A quick and easy way to get started using RMI by example 58

Enterprise Database Access with JDBC 2.0 Prasad Thammineni and
A look at the key features of version 2.0 Vasu Ramachandriah 68

Volume:4 Issue:7, July 1999

The World’s Leading Java Resource

TM

JDJ’S EXCLUSIVE JAVAONE COVERAGE

INSIDE THIS ISSUE:
Exclusive SYS-CON

Radio Interviews with
Scott McNealy &
James Gosling

pg.18

“We grew faster
than Intel, IBM,

Compaq, SCI and
everybody else”

“ JDJ is the No. 1 Java Publication!”
—George Paolini

“My fantasy for how
Java should evolve is
that nobody should be
aware that it exists”

2 JULY 1999

BEA
www.weblogic.beasys.com

3JULY 1999

Protoview
www.protoview.com

4 JULY 1999

Sun
www.sun.com/service/suned

5JULY 1999

EDITORIAL ADVISORY BOARD
Ted Coombs, Bill Dunlap, David Gee, Michel Gerin,

Arthur van Hoff, Brian Maso, John Olson,
George Paolini, Kim Polese, Sean Rhody, Rick Ross,

Ajit Sagar, Richard Soley, Alan Williamson
Editor-in-Chief: Sean Rhody

Art Director: Jim Morgan
Executive Editor: M’lou Pinkham

Production Editor: Cheryl Van Sise
Assistant Editor: Nancy Valentine

Editorial Consultant: Scott Davison
Technical Editor: Bahadir Karuv

Product Review Editor: Ed Zebrowski
Industry News Editor. Alan Williamson

E-commerce Editor. Ajit Sagar

WRITERS IN THIS ISSUE
Jim Crafton, Steven Feuerstein, Ron Harris,

Rick Hightower, Scott Howard, Christopher Lambert,
Vasu Ramachandriah, Sean Rhody, Rick Ross, Ajit Sagar,

Prasad Thammineni, Jason Westra, Alan Williamson

SUBSCRIPTIONS
For subscriptions and requests for bulk orders,

please send your letters to Subscription Department

Subscription Hotline: 800 513-7111
Cover Price: $4.99/issue

Domestic: $49/yr. (12 issues) Canada/Mexico: $69/yr.
Overseas: Basic subscription price plus airmail postage

(U.S. Banks or Money Orders). Back Issues: $12 each

Publisher, President and CEO: Fuat A. Kircaali
Vice President, Production: Jim Morgan
Vice President, Marketing: Carmen Gonzalez

Chief Financial Officer: Ignacio Arellano
Accounting Manager: Eli Horowitz
Circulation Manager. Mary Ann McBride

Advertising Account Managers: Robyn Forma
Megan Ring

Project Coordinator: Jaclyn Redmond
Advertising Assistant: Christine Russell

Graphic Designers: Robin Groves
Alex Botero

Graphic Design Intern: Aarathi Venkataraman
SYS-CON Radio Editor: Chad Sitler

Webmaster: Robert Diamond
Web Services Intern: Digant B. Dave

Customer Service: Sian O’Gorman
Ann Marie Milillo

Online Customer Service: Amanda Moskowitz

EDITORIAL OFFICES
SYS-CON Publications, Inc.

39 E. Central Ave., Pearl River, NY 10965
Telephone: 914 735-7300 Fax: 914 735-6547

Subscribe@SYS-CON.com

JAVA DEVELOPER’S JOURNAL (ISSN#1087-6944) is
published monthly (12 times a year) for $49.00 by SYS-CON

Publications, Inc., 39 E. Central Ave., Pearl River, NY 10965-2306.
Application to mail at Periodicals Postage rates is pending at

Pearl River, NY 10965 and additional mailing offices.
POSTMASTER: Send address changes to:

JAVA DEVELOPER’S JOURNAL, SYS-CON Publications, Inc.,
39 E. Central Ave., Pearl River, NY 10965-2306.

© COPYRIGHT
Copyright © 1999 by SYS-CON Publications, Inc. All rights reserved. No part of

this publication may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopy or any information storage and
retrieval system, without written permission. For promotional reprints, contact

reprint coordinator. SYS-CON Publications, Inc., reserves the right to revise,
republish and authorize its readers to use the articles submitted for publication.

Worldwide Distribution by
Curtis Circulation Company

739 River Road, New Milford NJ 07646-3048 Phone: 201 634-7400

Java and Java-based marks are trademarks or registered trademarks
of Sun Microsystems, Inc., in the United States and other countries.

SYS-CON Publications, Inc., is independent of Sun Microsystems, Inc.
All brand and product names used on these pages are trade names,

service marks or trademarks of their respective companies.

SEAN RHODY, EDITOR-IN-CHIEF

I
recently attended a technical conference and sat in on an interest-

ing discussion concerning moving from traditional testing to testing of
object-oriented systems. As many of you know, testing and quality
assurance is one of my pet peeves. All too often, groups of otherwise
intelligent, experienced software developers become spineless jellyfish
when it comes to putting together and sticking with a realistic estimate
for the amount of testing needed to ensure that the system under
development is completed and debugged. We’ve all paid the price for
this neglect. How many service packs, patches and point updates have

you had to install for your commercial software? And that’s just the tip of the iceberg. The
press rarely gets a glimpse inside the halls of industry to report on the situation within
internal development groups. Gross underestimation of the testing effort involved in soft-
ware development is a significant contributor to our software problems.

One of the root causes of this difficulty is the lack of understanding around the testing
process. Many software development organizations have abandoned the traditional water-
fall methodology of software development in favor of iterative or rapid-application devel-
opment approaches. These approaches often have significant business advantages – such
as shorter time to market – that justify the departure from the more rigorous waterfall
method, but they have a significant impact on how, when and how much testing must occur.
It’s common knowledge that a defect discovered in design is several orders of magnitude
less expensive to fix than a defect caught after implementation. Likewise, the cost to fix a
bug that is discovered after software is shipped or deployed is even greater. The effort
required to test in an iterative environment increases because the pace and rapid change
involved in RAD approaches often lead to the introduction of new defects, and the reemer-
gence of old ones. Additionally, it’s difficult to ensure that sufficient testing occurs before
the product is released, so a defect must often be corrected in the next release.

Web and distributed computing add significant complication to this already busy pic-
ture. At the simplest level, a distributed, component-based approach requires the creation
of testing harnesses because components need to be tested in isolation, as components, in
addition to the testing they receive when the entire system is tested. This isn’t as easy as
exercising a screen, as there is typically no GUI interface for the individual component. In
the Java world we create components for either CORBA or EJB. Then we build screens, or
pages, to use these components. To unit-test the component, we have to have some pro-
gram that will exercise the component. So, at a minimum, extra coding is required.

In reality, I’m afraid the situation is somewhat worse. I’ve known people who believe that
object-oriented development decreases the amount of testing required because only the
changed objects need to be retested. I can see where they’re coming from with this, but I
don’t think their points are truly valid. Encapsulation of behavior doesn’t lead to encapsu-
lation of defects. If this were so, a bug in one of the Windows system DLLs wouldn’t be capa-
ble of bringing the entire system to a halt.

The only solution I’m aware of for these problems is adequate testing. One expert I
spoke with recently suggested that every iteration of a system developed using object-ori-
ented techniques needs to be fully tested, not just unit-tested. Obviously this is a departure
from many testing methodologies, where integration and acceptance testing occur only at
the end of the process, even when using a RAD approach.

I’m sure you hate discussing testing with project planners and management as much as
I do. Many of the proponents of object-oriented programming misunderstand the cost sav-
ings involved when they claim it will increase development agility. They neglect to empha-
size that these improvements will be measured over time, and are unlikely to be realized in
just a single project. It takes several projects, leveraging previous work, to gain this advan-
tage. Nowhere is this more apparent than when we come to the testing area. So next time
you’re on the spot for a testing estimate, try to get a little education concerning the amount
of testing needed. And stick to your guns.

ABOUT THE AUTHOR
Sean Rhody is the editor-in-chief of Java Developer’s Journal. He is also a senior consultant with Computer Sciences

Corporation, where he specializes in application architecture – particularly distributed systems.
He can be reached by e-mail at sean@sys-con.com.

Testing My Patience

F R O M T H E E D I T O R

6 JULY 1999

Computer
Associates

www.cai.com/ads/jasmine/dev

7JULY 1999

One
Realm

www.onerealm.com/jdj

B
ased on published research by industry analysts, over 400 million spe-
cial-purpose electronic, non-PC embedded devices will be sold this year
– and over 1.2 billion units by the year 2001. By 2002, analysts predict
shipments of smart handheld devices such as PDAs, Palm Pilots and
smart phones will reach 25 million units. By year 2003, analysts project
that smart cards equipped with miniature databases could make their
way into virtually every purse and wallet in America. More than a billion
chip cards were shipped worldwide in 1998 alone.

Imagine carrying your new multi-application smart card, which may
have credit, debit and reloadable electronic cash functions. Add to that your personal profile
information and the ability that lets you store loyalty programs and loyalty points on the card.
With the security of a smart card and the power of Pervasive’s database, an online Internet
transaction can be placed securely without your having to provide your credit card number.
Electronic copies of the receipts can be recorded on the card, as can new loyalty programs
you may choose to participate in. With a standard method for storing and accessing data,
such as Pervasive’s Java Card SQL database, the electronic receipts can later be queried and
exported directly into desktop applications such as Quicken. Imagine never worrying about
lost receipts or filling out corporate expense reports! Never before has this level of applica-
tion and database interoperability been available in smart cards.

In partnership with Schlumberger, the leading supplier of smart card technology, Perva-
sive is participating in the Java Card Forum Database Subcommittee to lead the effort to pro-
mote an industry-standard database interface for smart cards. The objectives of the database
subcommittee are to define an open, on-card database access API for Java Card, basing the
on-card database API on JDBC, and to define a SQL dialect for use with all on-card implemen-
tations. Pervasive is committed to providing an industry-standard open card specification
promoting open database access across all cards.

Pervasive’s small-footprint database, Pervasive.SQL 2000 for Smart Cards, is a sub-8 K
engine designed to integrate with the Java Card environment. It provides both on-card and off-
card interfaces; the former is referred to as Java Card-JDBC or JC-JDBC, while off-card the
engine can be accessed using standard desktop interfaces such as ODBC and/or JDBC.

Pervasive.SQL 2000 for Smart Cards was announced in early June as part of a family of
database information management solutions that also includes Pervasive.SQL for Embedded
Devices as a sub-100 K data engine for real-time systems such as VxWorks, WinCE, QNX, Neu-
trino, Phar Lap and PalmOS. This highly portable, full-featured, small-footprint engine is well
suited for use in Internet-enabled information appliances such as set-top boxes, Internet
screen phones, Web-enabled PDAs and even smart refrigerators. A sibling, Pervasive.SQL for
Mobile Devices, is a sub-350 K data engine for WinCE that includes integrated replication,
remote access and event management – designed to fill the needs of nomadic applications.

The big brother of the family, Pervasive.SQL 2000 for PC platforms, is built on decades of
experience in delivering database software for use in low-maintenance applications. The new
release features industry-standard SQL support and a type III JDBC driver in the SDK.

To summarize, Pervasive’s goal is to support applications from the wallet to the Web. Real-
izing that no one size fits all, Pervasive has developed appropriate solutions for all applica-
tions. These solutions integrate with one another, expose compatible interfaces and support
data replication. For the wallet (Java cards) Pervasive has developed a sub-8 K SQL engine
that supports a significant subset of the JDBC API. For the Web there’s Pervasive.SQL 2000.
Pervasive.SQL for Embedded Devices and Pervasive.SQL for Mobile Devices round out the
product line and provide support for everything in between.

You can learn more about these exciting technologies through Pervasive’s Beta and part-
ner programs. Beta release of the complete Pervasive.SQL 2000 family is available for down-
load at www.pervasive.com. Developer resources for Pervasive’s products are available from
www.pervasive.com/developerzone.

ABOUT THE AUTHOR
Ron Harris, president and CEO of Pervasive Software, has been involved in successful entrepreneurial ventures for most of the
last decade. He spun Pervasive Software out of Novell, Inc., in 1994 and engineered Pervasive’s successful IPO in 1997 and a
secondary IPO in 1999. Harris is also a cofounder of Citrix Systems.

RON HARRIS, PRESIDENT AND CEO, PERVASIVE SOFTWARE

From the Wallet to the Web, Java Cards Get Pervasive

F R O M T H E I N D U S T R Y

8 JULY 1999

Developing distributed components with Java and DCOM (distributed

component object model) simplifies developing distributed applications. If

you know CORBA or RMI, DCOM is easy to learn. Microsoft’s Java Virtual

Machine makes developing COM and DCOM components painless.

JDJ FEATURE

Developing
with

DCOM
andJava Part

One

by Rick Hightower

DCOM Architecture
and the JVM
compared to

CORBA and RMI

9JULY 1999

Overview of COM and DCOM
The Component Object Model provides a means to create exten-

sible services called components. As components mature (evolve)
and add new features and functions, the services they provide
remain backward-compatible with older incarnations of the compo-
nents they replace. This enables older applications (COM clients) to
treat new components like older components. Thus, when you

upgrade the component, older client applications continue working.
COM uses polymorphism to accomplish the extensible component

architecture. COM compares to LPC roughly the same way C++ com-
pares to C, one being procedural and the other object-oriented. A
remote procedure call (RPC) is to DCOM as C is to C++. DCOM groups
data and methods into objects that you can use through various inter-
faces. Think of DCOM as COM with a longer wire. The terms DCOM and
COM are thus used interchangeably throughout this text.

COM is designed from the ground up to support distributed com-
puting. Just by changing a few Windows NT Registry settings, you can
use a legacy COM client with a DCOM server, or the client can request
a specific server.

The major difference between DCOM and COM is that DCOM uses
RPC. You can transparently use DCOM with COM clients that predate
the release of DCOM. You can also use most existing COM servers that
predate the release of DCOM as DCOM servers – again, just by chang-
ing a few registry settings.

At some point you’ll probably have to deal with COM/DCOM. Know-
ing COM is a good skill if you have to interface with commercial off-the-
shelf components and applications or existing in-house applications
that use DCOM. Because Windows NT is prevalent in the client/server
market, and DCOM is heavily integrated with the NT operating system,
it’s important to understand DCOM because of the proliferation of Win-
dows NT and the size of the COM component market.

DCOM currently ships with the Microsoft Windows NT 4.0 and Win-
dows 98 operating systems. It’s also available for download for the
Windows 95 operating system. In addition, there are efforts to make
DCOM available on a number of UNIX platforms. Many of the Java
application server providers, such as BEA’s WebLogic Java server and
Bluestone’s Sapphire, provide DCOM support.

Microsoft has made sure that their JVM integrates well with DCOM. Thus
Java classes are treated like COM objects. Also, Sun provides an ActiveX
bridge to expose JavaBeans as ActiveX controls. (An ActiveX control is a type
of COM component.) In addition, Halcyon provides a Java DCOM server.

With their JVM you can use the Java classes you create as script-
able COM components. Java classes can be scripted using Visual Basic,
VBScript, JScript, Perl, Python and other scripting languages. These
classes can be used inside a Web browser or an Excel spreadsheet, or
as part of an Active Server Page. Essentially, you can use your Java
classes anywhere you can use Automation (late binding). Automation
enables users to take control of components and applications through
easy-to-use scripting languages such as Visual Basic.

With Microsoft’s JVM you can use COM components and ActiveX con-
trol (which are written in other languages) as Java classes and JavaBeans.
You can use your COM components virtually anywhere you can use Java.

You may wonder why all this matters to Java. It’s simple, really.
There are a lot of COM components out there, and chances are you’ll
need to integrate them in one of your projects. For that matter, there
are a lot of COM component developers in the market, and you may
need to integrate their skills in your next project.

Saying there are a lot just doesn’t cut it – I wanted numbers. So I did
a little research on the demand for COM/DCOM and related technolo-
gy skills versus CORBA and RMI skills. I looked up want ads under
“Information Systems” in the employment sections for five major
cities. I searched for keywords regarding DCOM, CORBA and RMI. What
I found is shown in Table 1 and Figures 1 and 2.

Whatever our backgrounds, we all have have one thing in common
– at one time in our lives we were looking for work. I was looking when
I found my current job. The demand for COM/DCOM skills is anywhere
from 20 to 400% greater than for CORBA skills. With this in mind let’s
review what COM is.

The Component Revolution
Declaring one technology the winner and any of the others the loser

is impossible. There’s something else of greater importance that all
these technologies supply: the plumbing for the component revolution.

10 JULY 1999

These technologies enable the component
revolution, which allows companies to assem-
ble frameworks of components into working
solutions. Most information technology shops
have the option to buy commercial off-the-
shelf components on the basis of what func-
tionality they provide, not on the basis of
what distributed object technology they were
built with. They have this option because
there are enough tools to form a bridge
between any two technologies at least half a
dozen ways.

The component revolution is based on the
following precepts:
• Whenever possible and feasible, buy before

you build.
• Don’t reinvent the wheel. Be distributed

object/component-architecture agnostic
and buy the components that best fit your
organization’s objectives.

Following these precepts accomplishes
the following:
• It allows IT shops to embrace and extend

frameworks. Instead of focusing on the
mundane, they can focus on the IT tools
that will give their organization a competi-
tive edge.

• It saves support and development costs.
• It invests money in the component indus-

try, which will grow and prosper, thus push-
ing more application features into the mun-
dane space and allowing more innovation
and creation of cutting-edge IT tools.

DCOM Architecture
All distributed object architecture must

provide the following basic features:
• Interface definition/negotiation is important

to distributed systems. It allows distributed
objects the opportunity to communicate
and evolve separately without breaking the
existing contract.

• Directory services provide a means of find-
ing, activating and connecting to remote
objects.

• Marshaling is a way to make the object
appear to be in a local process, yet commu-
nicate the invocation of methods along with
their parameters over process and machine
boundaries. It allows access to interfaces
from remote sites and moves data to and
from the client and server process. It’s just
a means of formatting data between clients
and components so they can communicate
clearly at the bit and byte level.

• Object persistence is saving an object state
to a persistent storage, such as a flat file or
database. It’s also how to connect to a
unique instance of an object, e.g., when the
object is already running in another
process.

• Security is needed to protect access to com-
ponents at various levels.

Interfaces
Defining an interface between a client and

a component is like defining a contract

between two people. The interface exposes a
collection of methods that define what behav-
ior and functionality the component will pro-
vide.

In DCOM you don’t deal with objects
directly. Instead, you deal with interfaces to
the objects. A DCOM interface is a collection
of methods that define a service contract.
Actually, what you get is an interface pointer
that points to a vtable (a vtable is a collection
of pointers to methods). Java doesn’t support
interface pointers – or any pointers, for that
matter. However, Microsoft allows Java devel-
opers to access COM objects in a natural way.
The interface defines the behavior of an
object independent of any one implementa-
tion of an object. DCOM is a binary interoper-
ability agreement for how clients interact with
interfaces via pointers and local and remote
proxies; proxies act as surrogate objects that
are involved in marshaling the parameters to
and from the components.

The Microsoft JVM is a precursor to COM+.
How DCOM is handled in Java is a precursor
to the way DCOM will be handled in other lan-
guages with the introduction of COM+. COM+
will make DCOM programming a lot easier.
Let’s compare getting a pointer to an interface
in Java to doing the same thing in C++:

IHelloDCOM pHelloDCOM;
CoCreateInstance (CLSID_HelloDCOM, NULL,
CLSCTX_INPROC_SERVER,
IID_HelloDCOM,
(void **) &pHelloDCOM);

Here’s the equivalent Java code:

IHelloDCOM helloDCOM = (IHelloDCOM) new
HelloDCOM();

As you know, there are no pointers in Java.
So instead of dealing with pointers, the JVM
handles all the low-level complexity. It also
allows you to cast an interface to an object
instead of using the IUnknown interface nego-
tiation, which in many cases makes program-
ming COM in Java much easier than doing it in
C++. Actually, Java’s multiple-interfaces inher-
itance model maps nicely to working with IUn-
known.

DCOM provides standard interfaces for
dealing with objects. One such interface is

IUnknown. Every DCOM object must support
IUnknown. Also, Java classes, via the JVM,
support a lot of other standard interfaces. So
what’s a COM object? A COM object is a com-
ponent that supports one or more interfaces;
a COM interface refers to a collection of relat-
ed methods.

There are standard interfaces and there
are user-defined interfaces. COM objects are
accessed only through interfaces. A COM
class implements one or more interfaces, and
COM objects are runtime instantiations of
COM classes.

IDispatch is a standard interface that all
COM objects that support automation must
have. Java classes in the JVM, by default, sup-
port automation via the IDispatch interface.

COM works with many computer program-
ming languages. However, there’s a special
language for describing interfaces called the
Interface Definition Language (IDL).

A DCOM stub equates to a CORBA or RMI
skeleton. A DCOM proxy equates to an RMI or
CORBA stub. A stub in CORBA-speak is the
client; a stub in DCOM-speak is the server.

DCOM’s IDL, unlike CORBA’s, doesn’t sup-
port inheritance, which is a key ingredient to
object-oriented design. Instead, DCOM sup-
ports containment, delegation and aggrega-
tion. It also uses interface negotiation (IUn-
known), which provides the key feature of
inheritance, that is, polymorphism. Thus
DCOM can support many interfaces.

The good news is that you don’t have to
know COM IDL to do Java DCOM program-
ming. One of the keys to COM’s success is
ease of use. Java DCOM isn’t tied to IDL the
way CORBA is. In fact, there’s nothing special
about IDL. It’s just a C-like language for creat-
ing proxies and stubs. Even if you use the
Microsoft Java SDK with no fancy IDE, you
don’t have to write any IDL. And with the
release of COM+, COM IDL, like Latin, may be
a dead language in a few years.

COM uses the registry and the COM
library to perform an object lookup. When a
COM client tries to create a COM object, the
COM libraries look up the associated COM
class implementation in the registry. (This is
somewhat analogous to the way RMI uses the
RMI Registry or CORBA uses COSNaming.)
The COM class implementation is executable
code called the server. The executable code

Table 1: Comparison of demand for component architecture skills

COM/DCOM CORBA RMI
Phoenix 58 29 0
San Francisco 1718 1428 31
Los Angeles 418 100 2
Tampa Bay 70 24 0
New York 763 486 16
Chicago 223 132 6
Total 3250 2199 55

11JULY 1999

Enterprise
Soft

www.enterprisesoft.com

12 JULY 1999

that the COM class is associated with could
be a dynamic link library, an executable file or
a Java class. The COM libraries load the COM
server and work with the server to create the
object (the instance of the COM class) and
then return an interface pointer to the COM
client. With DCOM, the COM libraries are
updated to create COM objects on remote
machines.

To create remote objects, the COM
libraries read the network name of the remote
server machine from the registry to create
remote COM objects. Alternatively, the name
can be passed to the COM libraries’ CoCreate-
InstanceEx function call. We’ll cover a code
example that uses this call with the name of
the server passed as a parameter.

For remote components (i.e., DCOM com-
ponents) the COM libraries use the service
control manager (SCM, pronounced “scum”)
to perform object activation. In this scenario,
when a COM client attempts to create a COM
component, the COM library looks up the
COM object in the Windows NT Registry as
usual. What it finds in the registry is informa-
tion on how to instantiate the COM object just
as before. However, if the COM class configu-
ration in the registry specifies a remote serv-
er, the COM library will collaborate with SCM.
SCM’s job is to contact the SCM on the remote
server. The remote SCM then works with the
COM library on the remote machine to instan-
tiate the object and return an instance to the
client application. Unlike CORBA, DCOM has
no object ID. Instead, if you want to connect to
the same unique instance of an object, you
use a moniker.

With the release of Windows NT 5.0, COM
adds a central store for COM classes. All acti-
vation-related information about a compo-
nent can be stored in the Active Directory of
the domain controller. The COM libraries will
get activation information – such as the
remote server name – transparently from the
Active Directory. Reconfiguring the compo-
nent will be a simple matter of changing the

setting for the component in the Active Direc-
tory. The Active Directory then proliferates
these changes to all the clients connected to
the portion of the Active Directory that con-
tains the component’s information. This fur-
ther closes the gaps between CORBA’s activa-
tion model and DCOM’s.

Interface negotiation is the ability to ask a
COM object at runtime which other interfaces it
supports. Because all COM objects must imple-
ment the IUnknown interface, all COM objects
support interface negotiation. Thus COM
clients can access any COM object and use
QueryInterface to determine which interfaces
the COM object supports. The ability to query
the interface supported allows COM clients to
decide at runtime which interface to use.

QueryInterface allows the COM object to
pass an interface pointer to other COM
objects that don’t even have to be on the
same machine. COM uses QueryInterface to
aggregate many COM objects. It allows com-
ponents to evolve over time and yet still be
backward-compatible with older clients, while
new clients are allowed to access new fea-
tures through new interfaces.

This interface negotiation feature gives
COM architectural appeal. COM objects
describe their features at a high level of
abstraction. This permits COM clients the
ability to query the COM object to see
whether it supports a particular interface (a
feature set). Compare this to a CORBA
object’s single interface model. The ability of
a COM client to request the feature set of a
COM object allows for the flexibility you’d
expect from a component object model. In
other words, COM objects should be allowed
to mature and develop new features without
breaking old clients, yet allow new clients
access to those features.

Directory Services
RMI is currently lacking a solid default

directory service. However, third-party tools
that implement Java naming and directory

interface (JNDI) give RMI a robust directory
service. CORBA has an advanced directory
service, COSNaming, that provides a trans-
parent location of objects depending on your
CORBA vendor’s COSNaming implementation.
DCOM’s current directory service lacks a
truly distributed transparent nature like
CORBA’s COSNaming. This lack of support
seems to be the result of different approaches
to solving similar problems rather than to a
missing feature or an architectural advantage.

In Windows NT 5.0, however, DCOM can be
used in connection with the Active Directory.
Activation-related information about a com-
ponent is stored in the Active Directory of the
domain controller. The COM libraries then get
activation information – such as the remote
server name – transparently from the Active
Directory. The Active Directory will prolifer-
ate configuration changes to all the clients
that are registered to receive a component’s
information.

Marshaling
When a client makes a method call on a

COM interface, the COM objects in the other
process can be down the hall or on the other
side of the globe. The differences between
local and remote access are abstracted from
the COM clients. Marshaling involves taking
an interface pointer in a server’s process,
making that interface pointer available to the
client process and setting up interprocess
communication (either RPC or LPC). Next,
marshaling must take the arguments to an
interface method call as passed from the
client and serialize those arguments to the
remote object’s process.

Custom marshaling is fundamental for cer-
tain applications. COM offers standard mar-
shaling for the built-in standard COM inter-
faces. With standard marshaling COM furnish-
es a generic proxy and stub that communicate
through standard RPC for each standard COM
interface. Custom marshaling is not a trivial
matter with Java and DCOM.

By default, all objects are passed by refer-
ence, which means that when the client calls
a method of a remote interface, the call is mar-
shaled over the wire. If you want your objects
to be passed by value, you need to do custom
marshaling.

You probably won’t ever need to write
your own custom marshaler because
DCOM/Java integration centers around IDis-
patch. IDispatch is a built-in interface, and
COM provides a marshaler for it. In addition,
Microsoft provides a special optimized mar-
shaler for Java COM objects.

By comparison, RMI provides good sup-
port for marshaling in both ease of use and
the overall feature set. With RMI, if an object
defines a remote interface it’s passed by ref-
erence. However, RMI can pass objects by
value.

Imagine defining a remote hashtable type
of class that contains results to a query. Every
time your client accesses the remote

0

500

LA NY SF

DCOM
CORBA
RMI

1000

1500

2000

Figure 1: The demand for DCOM skills is highest in every job market.

13JULY 1999

Blue Sky
www.blue-sky.com

14 JULY 1999

hashtable object the call goes over the wire,
which can really slow things down because of
the latency of the network. RMI gives you
another option. If you pass a parameter to a
remote method and the parameter (1) doesn’t
implement a remote interface and (2) is an
instantiation of a class that implements Seri-
alizable, then the parameter will be marshaled
over the network. If the code for the parame-
ter isn’t available on the client machine, RMI
will load the class from the remote machine.
Not only are the values moved across the net-
work, but the code that accesses those values
is moved across the network as well. In
essence, you’ve moved code and data so that
the object has been relocated to the client’s
process.

RMI has an architectural advantage with
reference to marshaling. Neither CORBA nor
DCOM approaches this technique of moving
the code from one JVM to another, but both
allow you to pass by value. By default, DCOM,
like CORBA, uses pass by reference, whereas
RMI allows both pass by reference and pass by
value. In addition, RMI allows you to pass code.

Future versions of CORBA will have sup-
port for pass by value. It’s possible to create
your own pass-by-value support with DCOM,
but it isn’t as straightforward as the RMI
approach. To perform pass by value in DCOM,
you need to define your own custom vtable
interface and write your own custom mar-
shaler for the custom vtable, which involves
using C programming and Raw Native Inter-
face (RNI). There are ways around the DCOM
marshaling issue. For example, you could
pack all class data in a string and then write
your own unpacker, but it isn’t an elegant
solution.

Persistence
CORBA has a fairly straightforward persis-

tence mechanism – which Java and DCOM
don’t seem to have – for reconnecting to
unique instances of an object. DCOM does
provide a flexible way to manage persistence,
yet it’s not as implicit as the CORBA tech-
nique, so it’s more complex to implement.

As mentioned earlier, CORBA provides an
objectId (called an object reference) to con-
nect to specific instances of an object. Con-
versely, COM objects, by default, are stateless
objects. COM objects don’t have object iden-
tifiers. Instead they use monikers to connect
to a particular instance.

COM’s instance-naming mechanism is
extremely flexible but at the price of complex-
ity. An IMoniker specifies an instance for
COM. Monikers – also referred to as instance
names – for COM objects are themselves COM
objects. This explains their flexibility – and
their complexity (compared to the CORBA
approach). The standard COM interface for
these naming objects is IMoniker.

If the COM object the moniker is referring
to isn’t already running in a server process,
IMoniker can create and initialize a COM
object instance to the state it had before. On

the other hand, if the COM object that
IMoniker is referring to is running in an exist-
ing COM server process, IMoniker can con-
nect to the running instance of the COM
object via the COM server.

Security and Administration
As far as security goes, DCOM has some

clear architectural advantages with its tight
integration with the NT security model. This
gives DCOM an edge in administration and
ease of development. The same or similar
tools that are included with the OS can man-
age DCOM security. In other words, if you
know how to administer Windows NT, you can
easily learn to administer DCOM.

Interoperability and Bridging
It seems RMI is moving closer to interop-

erating with CORBA – a big plus for RMI and
CORBA. Of course, RMI interoperating with
CORBA will degrade some of its functionality
(you’d have to give up its most innovative fea-
ture: its ability to transfer code and data in a
pass-by-value call).

There’s already a lot of bridging technolo-
gies from one distributed object architecture
to another. For example, IONA has a
CORBA/COM bridge that takes a CORBA

object and makes it appear as an ActiveX con-
trol, which can then be embedded easily in a
Visual Basic program (or a Visual J++ or Del-
phi program, for that matter). Here’s another
example: the forthcoming CORBBeans imple-
mentation will allow CORBA distributed
objects to look like JavaBeans on the client. In
effect, this gives CORBA a local component
model and will make CORBA “toolable” on the
client. Making CORBA toolable makes it easier
to use in applications like Visual Basic by
using Sun’s ActiveX bridge to bridge the
CORBA bean to look like an ActiveX control.

Comparing DCOM to RMI and
CORBA

I don’t think it’s fair to advocate any one
distributed object framework (DCOM, RMI or
CORBA) over another; each one has advan-
tages that give it an edge for certain types of
applications. Also, using one distributed object
framework doesn’t preclude using another.

Ease of Development and IDL
Java’s transparent DCOM support (in JVM)

clearly gives it an architectural advantage:
namely, you don’t have to learn another lan-
guage to create DCOM/Java components. Con-
versely, when you develop a CORBA compo-
nent you typically start by creating an IDL file
and then deriving your client and server from
another class. It should be noted, however,
that there are tools – such as Inprise’s Caf-
feine – that help reduce CORBA complexity by
allowing you to define your interfaces in Java.

Typically, you don’t need IDL to create
Java DCOM components. But there are times
when you do need to create IDL files; for
example, when you want to provide custom
marshaling or create vtable components. Con-
cerning comparisons of the IDL languages
(Microsoft’s IDL to CORBA’s IDL), it’s been
stated that CORBA’s IDL seems more thought
out and easier to use. CORBA may have a
cleaner IDL syntax because it doesn’t extend
an existing IDL as Microsoft extends RPC IDL
for DCOM (see Figure 3).

Conversely, Java’s RMI has no IDL; it does-
n’t need one because it provides only Java-to-
Java communication. You define your remote
interfaces in Java, then create an implementa-
tion class in Java that implements the remote
interface you defined. Although it doesn’t
have an IDL to deal with, as CORBA does, the
inheritance model of defining a remote object
is a bit more complicated than the DCOM
approach. RMI is a bit less complicated than
the CORBA approach (unless you use some-
thing like Inprise’s Caffeine). Again, I’ve seen
demonstrations of IDEs that make RMI devel-
opment fairly trivial.

Various companies seem to be working
hard to make CORBA and RMI development
easier, so any advantage DCOM has in ease of
development may be short-lived.

Using a Model That Works
Splitting hairs over architecture issues

CORBA
40%

DCOM
59%

RMI
1%

Figure 2: The demand for DCOM skills is
more than CORBA and RMI combined.

DCOM
Java

CORBA

Java

DCOM
Java

RMI
Java

Figure 3: How DCOM compares in ease of use

15JULY 1999

Cloudscape
www.cloudscape.com

16 JULY 1999

may be the wrong way to pick a distributed
object framework. Instead, the component
model you use may depend heavily on the
talent pool at your company. If you have a
department full of Visual Basic programmers,
you should consider using mostly DCOM,
and RMI and CORBA if you have to connect
to third-party components and frameworks.
Conversely, if you use Java a lot on both the
middle tier and the client, you might consid-
er RMI, and use COM only when you want to
capitalize on a huge install base of applica-
tions that have ActiveX Automation support.
CORBA is the obvious choice if you need to
connect to a lot of legacy applications that
support it. Since COM custom marshaling is
nontrivial and it’s easy to pass objects by
value with RMI, use RMI if you want to move
a lot of objects around the network.

Conclusion
DCOM is an excellent tool for creating dis-

tributed applications as well as for enabling
the next revolution in history: the component
revolution. Using the Microsoft Java SDK, you
can easily write both DCOM clients and
servers, and you can integrate with existing
applications and in-house components devel-
oped by Visual Basic, Delphi and Visual C++
developers. You can still use CORBA, DCOM
and RMI from the JVM, so you don’t have to
select just one distributed object technology.

In this article we covered:
• How DCOM compares to RMI and CORBA

• Why DCOM may be important to you
• What DCOM architecture looks like
• How to use the Microsoft Java SDK to create

DCOM objects

In Part 2 we’ll cover using DCOM from the
Microsoft JVM with hands-on examples, and
details on just how easy it is to create
COM/DCOM servers in Java.

In the book Java Distributed Objects by Bill
McCarty and Luke Cassady-Dorion (Sam Pub-
lishing), the subject of DCOM is covered in
more depth. The book also covers RMI and
CORBA in detail (with an emphasis on
CORBA). I wrote Chapter 20 on DCOM, which
covers Java and DCOM in more detail and
relates how to create callbacks in DCOM and
how to use JActiveX to create Java wrappers
around existing COM components. I also have
an example that uses late bound calls using
IDispatch.

About the Author
Rick Hightower, a senior software engineer at
LookSmart, a category based Web directory,
has been writing software for a decade, from
embedded systems to factory automation solutions.
Rick recently worked at Intel’s Enterprise Architecture
Lab, where he researched emerging middleware and
component technologies. Rick can be reached at
Rick_M_Hightower@hotmail.com.

Rick_M_Hightower@hotmail.com.

Subscribe Today
and receive the

“CFDJ Digital Edition”
FREE

Subscribe Today
and receive the

“JBDJ Digital Edition”
FREE
at www.JBUILDERJOURNAL.com

1800-513-7111
or subscribe online for faster service
subscribe@sys-con.comG

E
T

Y
O

U
R

 O
W

N
!

17JULY 1999

Oracle
www.oracle.com/info/32

18 JULY 1999

Your #1 Java Resource,
Java Developer’s Journal,

and SYS-CON Radio were media
cosponsors of this year’s JavaOne.

Log on to
JavaDevelopersJournal.com
to listen to hundreds of
live interviews from the

show floor
including...

Scott McNealy
George Paolini

and James Gosling

QA
19JULY 1999

QA

QA

JDJ: Thanks for taking some time. Now, this confer-
ence has been going on for a couple of days...
McNealy: The real opportunity here is to keep the
momentum going by having regular Java-oriented events.
Get small working groups where you can sit down and work
through the issues, understand the opportunity and get the
customers next time. It would be just great to get every cus-
tomer here. We basically rented San Francisco, and it's too

small. I think it's a good opportunity, though, to get other
customers involved, get your customers to meet in smaller
half-day or day events in your area. Get some people from
the JavaSoft group to come out and support it or whatever,
but get the Java evangelists in your customer base in touch
with those that aren't there and let them help you do the
cross selling. It's fantastic how our customers are selling our
customers here.

JDJ: Java – in the short term – sometimes people
tend to overestimate the impact. For example – the
Web – four or five years ago everybody thought it
was there, it was going to be hot. It has taken four
or five years until we've seen the e-Bays and the
Amazons really come into fruition. What do you
think about Java and JINI long term?
McNealy: You have to get your customers to help aim their
technologies to where Java will be, to where market accep-
tance, the Web, network performance, the tools and the
functionality will be. And that requires taking a little leap of
faith. I think a lot of companies out there are finding out that
they didn't adopt the Web, or they wrote it in Windows and
are waiting for Windows 2000, and now they've got viruses;
the product isn't there; it's going to be buggy; it's going to
be slow and they can't deliver their apps out over the net-
work; and they're thinking why didn't I do it in Java, why did-
n't I start two years ago in Java. I think the biggest problem
we have is underhyping, not overhyping, this technology.

JDJ: But Sun is changing the rules of the game with
Java. Is there a message you have from the field on
how are we actually going to make money on it?
McNealy: Are we making money? We grew at 24% last
quarter. That's not bad. In fact, that was faster than Intel, IBM,
Compaq, SCI and everybody else out there. That's pretty phe-
nomenal growth. And by the way, we're operating at
unprecedented levels of contribution. Our pretax margins are
up significantly over 15%. We're making good money. Some-
thing is working right, and I don't want to mess with it. The
way to make money is not by making money on Java. You
don't make money on English. You don't make money own-
ing English. You make money doing things in English. And
the way we will make money is doing things in Java, not nec-
essarily on Java itself. The chips, the operating systems, the
computers, the tools that run Java and training for Java, all of
those kinds of things: that's how we're going to make money.

J avaOne ‘99, opened by keynote speaker John Gage, was the largest developer conference yet, with 20,000 in attendance and more than

800 speakers. It proved to be a great four days. Dr. Alan Baratz drew prolonged applause when he reported that the Java community now

exceeds 1.7 million. Baratz continued with a feel-good, stat-laden speech, announcing three new editions of the Java platform that collates

all relevant APIs in one package. This move will “simplify the Java deployment” of applications. Netscape will now ship with Java 2 SE. The follow-

ing pages excerpt JDJ’s exclusive SYS-CON Radio coverage from JavaOne.

EXPOSED

SYS-CON Radio Interview
SCOTT McNEALY

QA

QA

QA

QA

QA

QA

QA

QAQA
QA
JDJ: There are a lot of neat gizmos and
gadgets on the floor of the show here.
How many Java-enabled devices have you
got in your life? How many do you own?
McNealy: Basically every desktop I go to is a
Java browser. As far as I'm concerned, the most
exciting Java-enabled device is a full-blown Java
browser that lets me get at Sun.net because
that's my desktop. In fact, now I go in and I use
CD. I would rather use Sun.net. CD is total
overkill for me. To me, the browser is the greatest
Java-enabled device. Now, I don’t usually need
the other nomadic devices. All I want is the
phone. I’m experimenting right now with the

Motorola Page Writer. There are a lot of people
running around here actually writing software
down in this new Palm V with Java. I think that's
going to be an interesting platform. It might be
my next Java-enabling device.

JDJ: One of the SEs asked me to ask you a
question from this morning. Apparently
IBM released VisualAge on Linux; they
tested but haven't yet released it on
Solaris. Are there any comments about
that? Are we going to see VisualAge on
Solaris?
McNealy: I think they should get it on Solaris,

and I think that's going to be something that will
be rectified quickly.

JDJ: Okay. So if we're outgrowing San
Francisco, where is JavaOne going to be
held next year? Any ideas?
McNealy: I don't know where we could go. It's
too hot down in Las Vegas. Hmm, what would be
a good city? I don't know, let's go do it in Palm
Springs.

To listen to the unedited version of
the Scott McNealy interview, log
on to JavaDevelopersJournal.com

20 JULY 1999

JDJ: We're back on SYS-CON Radio. Joining
us right now is the vice president of mar-
keting for JavaSoft, George Paolini.
George, would you tell us a little bit about
your editorial column in this month’s Java
Developer’s Journal?
Paolini: Sure. I was invited to participate in the
latest issue of JDJ as a sort of celebration of the
upcoming JavaOne. The piece that I wrote was
really just to step back for a minute and take a
look at where we are with the technology and
what's happening. I think this event here today is
back in real life. As you can see out here, we've
got some amazing momentum, 20,000+ folks
coming through trying to learn the latest and
greatest on the technology. I think it says a lot
about this technology and its place in what's hap-
pening in network computing.

JDJ: George, you are marketing for Sun,
which means that you're in charge of com-
municating Sun's message to the develop-
er. What is that message you want the
developer to go home with after JavaOne?
Paolini: I think the message that I would like to
leave in the heads of the developers is the same
message I would leave in the heads of any con-
sumer or customer of any product or technology.
When you're purchasing that technology or that
product or investing in it (purchasing is one way
you invest because you invest with your money,
but you also invest with your time and your
efforts -- I guess it would be a bit of advice),
make sure that investment has a return, which is
in the form of allowing you some choice, choice
in how you use it and freedom to continue to be
able to purchase products that innovate and are
innovative as opposed to products that lock you
into a particular platform. I won't mention
names, but you can guess what I'm talking about
here. But the point here is I think the computer
industry has a lot to learn about this from the
consumer electronics industry. We learned some
hard lessons. When you invest in technology, you

want to be sure that you get the best return on
that investment. And the computer industry has-
n't exactly been architected to make that happen,
and I think it's changing now. I think with what's
happening with the Web and giving people the
ability to make choices, it's actually driving more
innovation, and innovation is what gives cus-
tomers choice.

JDJ [Alan Williamson]: One of the things
that I as a columnist always come across is
people still ask me, “Where can I buy
Java?” Java is still perceived as a product,
which I think maybe was symptomatic of
where Sun possibly marketed at the begin-
ning. So how do we address that now?
Paolini: Let me try to explain for the less techni-
cal members of the audience exactly how this
works. And what we have done is a model that
we didn't invent but I think we maybe improved
upon it, certainly expanded upon it, and it's the
model of allowing some freedom in the use of
the technology. In this case, it's a binary version
of what we call a runtime or a piece of software
that will execute a program or an application, and
that's free. It's free for developers, it's free for
end users, and in this case usually for corporate
customers to use at runtime without charge to
Sun. Where we do charge is for the use of the
source code. We allow you to actually download
the source code and use it, but at the point when
you take it, innovate upon it and put it into a
product, then we start charging for it. This is a
model that has evolved. We now call it our com-
munity-source licensing program, and we think
it's pretty innovative. So the folks that actually are
paying licensee fees to Sun are companies like
IBM, Novell and Oracle, many of the companies
that you see here today. But for the developer
who is taking that runtime and putting it in their
application, there is no charge. So there’s a tech-
nology and it's a product in the sense that we do
license it, but we don't license or charge for the
binary version.

JDJ: You still talk of Java as a product and
not as a language. We had James Gosling
here previously, and his dream was – I
don't want to know it's Java, I just want
the solution.
Paolini: Right. That's absolutely true. And I guess
another cue that you could take from the con-
sumer electronics industry is exactly that. When
this technology is really truly successful is when
you don't even know it's there, and that is really
the dream. But I think we're a ways off from that
happening, but it's certainly what you see on the
show floor here this year, and certainly what
we've been talking about a lot. I have one of
these devices in front of me here; it's the new
Palm V that has the most recent version - the
Java platform micro-addition on it. What that says
is this is making the technology usable in many
ways that weren't even thought popular just a
couple years ago by most people. Certainly
James had the vision many years ago, and it's
now coming, I think, to fruition.

JDJ: It's a shame that the Palm Pilot wasn't
like the Java ring last year, which you
were giving away, but now you're making
us pay for it.
Paolini: We're making you pay because it's a
considerable amount of investment. We are
charging the exact cost for this device plus the
tax. But the cost was considerable, and so we're
only charging what the device itself costs.

JDJ: The Palm Pilot is the first example of a
consumer device for the masses as it were.
Where are we likely to see other examples
popping up in everyday life with Java?
Paolini: I think you're going to see examples in
lots of devices that include things like Web
phones, screen phones and other PDA-type
devices. I think what makes the Palm the real hit
this year is this is the device that many of us have
come to know and understand. And if you really
look at the device and the people that use it,
what you'll recognize is that Palm and 3Com
really broke the mold on how to build a device
that is really user-friendly. Everyone else tried to
figure out a way to shrink the computer desktop,
and I mean the computer desktop in functionali-
ty, and the user interface down to a palm device,
and what we have all learned is that is not how
people use devices.

JDJ: You are talking of Windows CE.
Paolini: Well, I'm not only talking about Win-
dowa CE, quite honestly. I think many other
companies tried a lot of different models, but
the point is that what Palm did was they actually
looked at many operating systems and tried to
figure out which of those might be most appro-
priate for this device when they went out and
built the Palm OS. And what they did, if you look
at the history, is they scrapped it all and went
back and did some hard studies on how people
actually interact with devices. And they looked at

SYS-CON Radio Interview
GEORGE PAOLINI

21JULY 1999

Interbase
www.interbase.com

QA

QA

QAQA

QA

Q
QA

22 JUNE 1999

what people really wanted. Well, what they want-
ed was a calendar, a very simple e-mail tool, a
very simple organizer and they wanted it in a
way that was acceptable through basically point
and click; they built it based on that. I think the
message with Java on this device is it's the mar-
riage of, I think, two very user-friendly technolo-
gies. I think you'll see Java technology in many
other types of consumer devices, some of which
are hard to even really try to envision today. You
know, the average automobile today has 40
microprocessors. Most of those microprocessors
don't talk to one another. The average home has
somewhere around 40 microprocessors. Any
microprocessor with network capability is a good
candidate to have some version of a Java plat-
form actually driving the instructions.

JDJ: What do you see from a marketing
standpoint as the reason for the success of
Java and also what do you see as the diffi-
culties in marketing something like Java?
Paolini: The easy part is that for the software
programmers what we hear back time and time
again is that, number one, it improves productivi-
ty. And what we hear is that it makes it easier to
write applications, and obviously the ability to run
those applications on multiple platforms, or what
we sometimes refer to as the switching cost of
writing an application and running it on various

platforms. That's the easy part. The hard part is
that for the general consumer it's hard to really
understand and appreciate where and what this
technology does. Kind of an amusing anecdote,
but I think one that illustrates what is really still a
very technical piece of work, is that a friend's
mother went off and bought a PC (she's 73 years
old), and he had been doing some research for
me on what is going on with Java. So he thought
he would just do a little test sample here, and he
said, “So, Mom, you are going out to buy a PC.
What do you think of Java?“ She said, “Well, I
don't really know much about it, but I have to
have it on my PC.“ And he said, “Well, why?“ She
said, “I don't know. I just know I have to have it.“
That is kind of a good problem to have. But obvi-
ously there is some work to do in articulating
what the value is of this technology to the aver-
age consumer. So I would say that would be the
challenge.

JDJ: Our last question for SYS-CON Radio is,
I know you write for us, how do you like
Java Developer’s Journal? What do you
think JDJ is doing for the Java industry?

Paolini: Well, rather than ask my opinion I guess
let's just look at the numbers. I think what I've
heard is that you're the number one Java-specific
publication in terms of your subscriber base. I
obviously feel good about that because that says
to me that there is really a demand out there for
more information about the technology. Hats off
to you. You are obviously doing something right
by supplying the information in appropriate con-
tent that these people really want. So good luck
with that.

JDJ: We're very proud to have James
Gosling with us here today. James, how do
you think this show is going?
Gosling: A lot of people who have been working
on it are now going around in an advanced state
of sleep deprivation, really looking forward to
crashing for about the next week or two. But it's
pretty exciting. A lot of this stuff is getting very
real. I saw the Palm Page Writer download demo,
and that just about knocked my socks off.

JDJ: I listened to your keynote speech. You
mentioned that you spent most of last year
behind lawyers. Has this frustrated you?
Gosling: Yes, it has been pretty frustrating. It def-
initely does feel like sticking your head into a
black hole. It has been educational; it has been
amusing; it has been sickening. I mean, having to
read all that e-mail and getting some of that truth
out. I don't think I wanted to know that.

JDJ: Have you not been developing any-
more? Do you mean pure administration?
Gosling: Well, no. I do as much development as
I can. I have this other problem of having really

severe carpal tunnel problems. So, even if I
weren't stuck in a room with the lawyers, I kind
of have a quota of about a couple hours a day.

JDJ: What areas of Java are you actually
working on yourself? Are you part of the
core of Java? What is your baby at the
moment?
Gosling: Nothing is really my baby at the
moment. Rather, I sort of get involved in various
bits and pieces of things. People come and ask
me for advice. There is kind of a list of language
change proposals, and I'm one of the people that
sort of argues about those and in great depth.
I'm on the real-time working group, so I pull a
fair amount of time on that.

JDJ: We have our first question out here
from the floor. Your name, sir?
Ed Roberts: Ed Roberts. Basically my ques-
tion is: What are you looking at in terms
of templates, what were your design trade-
offs and are you specifically involved in
that?
Gosling: I've personally tried to stay out of that

particular food fight. I had been looking into this
stuff for quite a long time, and there are many
different flavors of template-like things and many
people who consider themselves experts and no
two experts agreed five or six years ago. We start-
ed this debate that has largely been run on this
mailing list run by Gilad Brocka, and there has
been lots of interesting and gory debates over the
last four years about what's right, what's wrong
and what are the correct things to do. It feels like
things are converging, and there are really three
proposals right now that are sort of the frontrun-
ners. One thing that has been hard to get over is
to come up with something that gives you poly-
morphic behavior but is also fairly simple and
comprehensible. One problem with the whole
area is most of the solutions tend to create all
kinds of complexity that nobody can actually
understand. Also, there have been problems with
things like the template mechanism in C++. It's
sort of an invitation to have a huge amount of
code blows; struggling with ways to deal with that
and come up with a proposal has taken a fair
while. The frontrunner proposal is something
called GJ, Generic Java, that was done largely by a
guy at the University of Southern Australia (his
name escapes me right now), in conjunction with
Phil Wadler who was originally at the University of
Glasgow and is now at Lucent and a guy named
Dave Stoutimier and Gilad Brocka. One of the
interesting things about that particular proposal is
that it involves no changes at all to the VM specifi-
cation, and it has a really nice migration story
from existing container classes into sort of para-
meterized container classes, because the sort of
parameterized versions of classes and the nonpa-
rameterized versions are compatible in an elegant
kind of way. Then there is sort of an extension to
that. The number two proposal is basically the
number one proposal with some facilities for
doing runtime introspection. The number one
proposal, one of the things it gives out for not
having any VM changes is there are a few things
you can't do, and really the only important one is
that there are some sort of introspection things

Paolini on JDJ...

‘Hats off to you.
You are obviously
doing something right

by supplying
the information
in appropriate
content that
these people
really want’

SYS-CON Radio Interview
JAMES GOSLING

23JULY 1999

Cerebellum
www.cerebellumsoft.com

QA

QA
QA
QAQA

QA

JULY 199924

you can't do. Then there is this other one that
came from MIT. Its implementation is yet more
complicated, but it allows parameterization over
primitive types as well. And so the debate that is
going on right now is sort of at what level, what
sort of point in the spectrum is most appropriate
to the community. That one is actually being run
through the Java community process. I don't
know what the state is exactly with it, but if you
go to the Java.Sun.com Web site, you'll find it.
You'll find the descriptions of all of these things in
incredibly gory detail. It is all out there.

SYS-CON Radio Listener: I'm from Oracle.
And my question is: When you designed
Java, Java was a programming language.
It had a virtual machine specification and

a language specification. Now anything
and everything that's written in Java,
whether you write libraries or something,
has become part of the Java phenomenon.
When someone writes, say, compile it in
Java, it's just another programming lan-
guage, but somehow people have taken
the concept of Java and anything that has
to do with the Web or the programming
language. Any program that I write in
Java, I put J in front of the name, and I say
it's a J-Compiler for C++. Now, no one ever
said that C stands in the way because Java
compilers are done in C for instance, but
everybody seems to just take Java, and if
you touch your code with Java, it just
becomes a Java phenomenon. What do
you think about taking the concept of Java
just a bit too far, especially the media
types? Do you think Java is the solution to
everything?
Gosling: It's really, really bizarre. In some sense
my sort of fantasy for how Java should evolve is
that nobody should be aware that it exists, and
that people build devices...I mean, it's sort of part
of the JINI story that things should just work. You
shouldn't worry about, oh, is it a Java this? What
kind of a boot disk do I need to make this thing
work? You don't do that; you just do it, you just
get on with your life.

SYS-CON Radio Listener: Hi, I'm Thomas.
I'm curious about the thought process
behind the fact that an interface isn't
allowed to have static methods. Because
inherently there isn't anything wrong with
doing that, and occasionally it's really nice
to put a factory method in an interface
that returns instances of that interface
rather than to put it off in another real
class for that sort of purpose. I was won-
dering what thoughts were behind that.
Gosling: I think it's now seven years after the fact
on that particular decision. I'm not sure I can
exactly justify interfaces very pure, that they are
just a description of an interface, that they sort of
exist almost independent of behavior in space
and time and the rest of that, they just describe
the shape of the socket that you plug something
into. And it was just trying to keep things concep-
tually clean. And so if you wanted to do some-
thing that had behavior, you go to a class. As
time passed, it's not clear if that distinction was
actually as important as I felt it was at the time. I
mean, I would be half tempted to actually get rid
of interfaces completely and just do something
based on class. But it turns out that there are
some other interesting reasons for doing inter-
faces that have to do with the way that method

calls are implemented, in that sort of under the
sheets there are two forms of dynamic dispatch,
one that is very fast and one that is almost as fast.
And when you use an interface, you get the not
quite so fast but much more dynamic dispatch
mechanism. And when you just call a class, you
get the three instructions, bang! You are there. It's
fast as the procedure call version. So I sort of kept
the schism alive, but boy oh boy, it was a delicate
one. It still feels right, but it was one of those
ones that was kind of on the edge and it was
done more for purity than anything else.

JDJ: Why is there only one Java Network
Station in the whole building this time,
where last year it was everywhere? Sun
was hailing the Java net station as the
next-generation solution...

Gosling: You know, you ought to ask Scott
McNealy that one.

JDJ: How do you feel about that?
Gosling: Ask Scott that one.

JDJ: Because we're not on the Palm talk.
We're going to this beautiful-looking
machine down to this palm-sized machine
now.
Gosling: Well, in some sense that is what the
Network Station ought to be. I mean, the big
shark fin thing weighed several pounds, and in
some sense it was more a conceptual demo than
a real device. I have always thought that things
like the Palm were a much more real device for
that kind of thing, much more compelling.
Because if you're in a foreign factor that is like
the net station, that's big enough, bulky enough
and expensive enough; it might as well be a big
box.

JDJ: So you're more than happy to see Java
being used where it was really intended to
be, which was consumer hand devices as
opposed to running back-end servers, etc..
Gosling: Oh, running back-end servers works
out really well too. Some of the place is sort of in
the middle. Whether they make sense or whether
they don't make sense is sort of a matter of
design trade-offs that are dependent on the par-
ticular moment in time. You know, how much the
CPUs cost, how much does D-RAM cost. You get
one answer one day, the next answer the next
day, and it changes your design.

JDJ: Next year, JavaOne 2000, what will
we be talking about?
Gosling: You know if I knew the answer to that
one...

JDJ: You would be even richer now.
Gosling: Well, I would actually be rich. I would
not be a guy with a mortgage. Let's see. What is
most likely to be real?

JDJ: Are you seeing XML as a big part in
the new wave?
Gosling: Yeah. XML has been a real part of it. I
think a lot of people get confused about what
XML is. XML as a data interchange format, which
is what it is, works great. There is a lot of stuff in
Java to deal with that. You will probably see a lot
of XML-based things next year. I would like to see
a bunch of real-time-based things. I would like to
see some serious supercomputer stuff next year.
There will probably be a lot more than just the

Palm that runs KJava. The thing I'm really
intrigued about is so there were 10, 15-odd thou-
sand Palm VIIs delivered at this conference, the
SDK for them is available, what are you guys
going to do? I mean, it has taken the Palm Pilot
from being something that you can write notes
on to something that you can go party with. For
me, the exciting thing about what goes on in this
whole business is that it's always a surprise, it's
sort of not us, it's you. And the things that you
guys do always surprise me. If you asked me that
question last year, I would never have predicted
that the guy with the Lego Mind Storm Robot
playing laser tag -- I mean, that was just incredi-
bly goofy and a lot of fun.

JDJ: My last question would be what do
you think JDJ itself is doing for the Java
industry? What do you think of the
magazine?
Gosling: It's getting information out to people,
getting people talking, all of these mechanisms
that sort of get people together, that get the tech-
nology out and get the interesting things in. Just
the advertising is fun, you know, what it is that
people are doing out there in the world. It's
always a good thing to look at.

Gosling on JDJ...

‘Just the advertising is fun,
you know, what it is that
people are doing out there
in the world. It’s always

a good
thing to
look at’

ObjectSpace
www.objectspace.com/go/universal

26 JULY 1999

I’ve spent over a decade working with Ora-
cle technology to develop and deploy applica-
tions. In the process I’ve developed an area of
expertise: the Oracle PL/SQL language.

PL/SQL is a flexible, powerful procedural
database programming language. There is no
doubt that if you want to interact with the
Oracle database, PL/SQL is the way to go. It
has even adopted some object-oriented capa-
bilities in Oracle8. With Oracle’s decision to
integrate a Java Virtual Machine directly into
its database, however, it’s incumbent upon all
Oracle developers to learn the Java language.
Most important, we need to figure out how to
use both Java and PL/SQL within the Oracle
server technology to get the best of both
worlds.

I’m busy learning Java and am both
delighted and dismayed by the features of this
most modern object-oriented language. I
recently spent some time wrestling with and
figuring out how to use abstract classes. This
article shares the lessons I learned; my hope
is that developers new to Java will be able to
understand more easily this important but
somewhat obscure facet of Java.

Analyzing Program Performance
I built an enormous body of generic,

reusable code for developers in the PL/SQL
environment; I even bundled it all together
into a library called PL/Vision (available from
RevealNet, www.revealnet.com). As I move
into the Java world, I find myself trying to fig-
ure out which techniques and functionalities
that are useful in PL/SQL carry over into Java.

One of the handiest utilities I constructed
in PL/SQL was the PLVtmr package (packages
in PL/SQL are similar to static classes in Java).
Developers use this package’s programs
(PLVtmr.capture and PLVtmr.showelapsed) to
calculate the elapsed time of a particular pro-
gram or code segment. This timer utility
proved handy because it offered a granularity
of timing (down to the nearest hundredth of a
second) and focus. Rather than run an elabo-
rate analysis/trace session, I could quickly
determine the performance of a single pro-
gram. I could also compare different imple-

mentations of a given requirement to find the
version with optimal performance.

I decided to build a mechanism in Java
similar to the PLVtmr package. After a small
amount of research, I discovered that the Sys-
tem.currentTimeMillis method returns the
current time as the number of milliseconds
since January 1, 1970 00:00:00. And just in
case you were concerned about Y2K prob-
lems in Java, rest assured that System.cur-
rentTimeMillis will not overflow till the year
292280995.

(I joke with PL/SQL students that the
authors of Java experienced a bout of “lan-
guage envy.” PL/SQL calculates elapsed time
to the hundredth of a second, so naturally
Java must go down to the thousandth of a sec-
ond. In reality, of course, I imagine that
Gosling and others didn’t pay a whole lot of
attention to Oracle PL/SQL as they created
their own “Write once, run everywhere” lan-
guage.)

Great! So I have a mechanism that provides
the time to the nearest millisecond. How do I
use that method to calculate the elapsed time
of a program? By comparing consecutive calls
to the method. Listing 1 shows a very simple
class that demonstrates the technique by tim-
ing how long it takes to count the number of
bytes in the specified file.

The first time I executed HowFast.main, 70
milliseconds elapsed. Subsequent executions
revealed a steady-state elapsed time of 40 mil-
liseconds (see Figure 1).

Well, if you hadn’t previously known about
System.currentTimeMillis before picking up
this article, you’ve now learned something
new about Java! You’ve also seen how to put
this method to use in your code to calculate
elapsed time. Sadly, this is as far as most
developers go; they learn about a new
method, then write a script each time they
need to apply the technology. They might
even construct a “template” class in a file as
follows (also stripping the code down to its
bare minimum):

class HowFast {
public static void main (String[] args) {

long timeBefore = System.currentTimeMillis();

// Run the code you want to time here.

System.out.println (
System.currentTimeMillis()-
timeBefore);

}
}

I suggest, however, that a much more sen-
sible, productive and elegant solution would
be to construct a class that encapsulates the
details of the elapsed-time computation and
exposes a set of methods to get the job done.
I will build such a class in this article, and
then extend it to an abstract class so you can
easily perform benchmarks on code that you
construct.

Performance Comparison Example
Before diving into the build process, let’s

take a look at the code to demonstrate the
usefulness of a timer mechanism. The most
common application of a timer is to compare
the performance of two or more different
implementations of a requirement. As I men-
tioned before, I’m just learning Java, and start-
ed playing around with streams by manipulat-
ing files. I decided to write a program to count
the number of bytes in a file and came up with
two different implementations. I put both of
these methods into my InFile class (it returns
information about the contents “in a file”),
which can be seen in Listing 2.

The InFile.numBytes method counts the
number of bytes explicitly, while InFile.num-
Bytes2 simply takes advantage of the avail-
able() method to return the total. By using
available() I’m taking a bit of a risk because if
it’s a very large file, not all bytes will be avail-
able. For the purposes of my test, however,
this will serve us just fine. I also catch any IO
exceptions and return -1 to indicate a prob-
lem; that way developers can use numBytes
without having to worry about exceptions
popping out of the program.

Now I’d like to determine which of these
implementations is the fastest – my hunch is

JDJ FEATURE

How to build a utility that can
be used with ease and flexibility
How to build a utility that can
be used with ease and flexibility by Steven Feuerstein

27JULY 1999

that numBytes2 is faster since it takes advan-
tage of the available() method. I should also
see if their behavior changes in response to
differently sized files. So let’s build a Timer
class to help us answer these questions.

The Timer Class
The objective of the Timer class is to pro-

vide a set of methods that allows us to calcu-
late the performance of an individual portion
of code. The full text of the Timer class is dis-
played in Listing 2 and may be found in
Timer.java; the following sections examine
separate parts of the class. First, however,
let’s apply the class’s methods to the HowFast
class to see how Timer would be used:

class HowFast1 {
public static void main (String[] args) {

Timer t = new Timer();

t.start();

int result = InFile.numBytes
("c:\\temp\\te_employee.tps");

t.showElapsed();
}

}

The results of running HowFast1 are
shown in Figure 2.

Notice how much is missing in this new

implementation of a timing script?
• There’s no mention of the System.current-

TimeMillis method; the code used to per-
form the timing is hidden. This makes it
easier to deploy new and better implemen-
tations of a timing mechanism as they
become available.

• There are no local elements such as time-
Before and timeAfter. These longs were only
needed by the timing mechanism and are
now subsumed within the Timer class.

• I no longer expose how I am showing the
elapsed time. I may want to rely on Sys-
tem.out.println today, but change it to
something else later. My reliance on a dis-
tinct class, Timer, to handle these details
means I can change implementations at any
time without affecting the users of the
class.

Of course, I can also perform multiple tim-
ings by instantiating more than one Timer
object, which is useful when I want to com-
pare different implementations. This
approach is shown in Listing 3.

The output from executing this script is
shown in Figure 3. As you can see, and as I
suspected, the version based on available() is
consistently faster. Actually, now that I men-
tion it, how can you tell which result goes
with which test? Not simply by eyeballing the
output. Wouldn’t it be nice to be able to
include a message or context with the results

so you can interpret them more easily? Let’s
modify the HowFast script once more and
see, in Listing 4, how intelligible we can make
the output.

Now, I have added a word describing each
test in the call to showElapsed(). This infor-
mation is then added to the output message,
as shown in Figure 4.

You should now have a solid idea of how
we want the Timer class to work. Let’s explore
the implementation.

Class Elements
Each object instantiated in the Timer class

has the following data elements:

// Start time elements
private long mstart = 0;
private boolean mstart_set = false;

// Stop time elements
private long mstop = 0;
private boolean mstop_set = false;

// Context, as in: description of the
// timing run

private String mcontext;

For both start and stop points, Timer
keeps track of the value returned by Sys-
tem.currentTimeMillis. (mstart and mstop
therefore correlate to timeBefore and
timeAfter in the original script example.) It
also uses boolean elements to remember
whether a timing session for the object has
started and/or ended. These flags will ensure
that valid actions are taken (you can’t, for
example, end a timing session before you
start it).

Finally, the mcontext element is a string
that will be used to display information about
the timing session if the programmer provides
context information in the calls to start()
and/or stop().

Starting the Timer
To start the timer, you must first instanti-

ate a Timer object and then call the start()
method. At the time of start you can also pass
a string that will be used in the context or
elapsed time display. This is the implementa-
tion of start():Figure 1: Multiple passes using HowFast for timing

28 JULY 1999

// Start the "clock ticking". Of course,
// the clock is always ticking. This just
// captures the starting point.

public void start (String context) {
mstart = System.currentTimeMillis();
mstart_set = true;
mstop_set = false;
mcontext = "Elapsed";

if (context.length() > 0)
mcontext = "Elapsed from " + context;
else

mcontext = "Elapsed from start";
}

The start() method sets the various ele-
ments (“I have started but I have not yet
ended.”) and then constructs the context
string based on the value passed in.

Stopping the Timer
When you’ve finished running the code

you wish to time, you call the stop() method
to stop the timer. As you’ll see below, you can
simply call elapsedMessage() or show
Elapsed(). They will call stop() if you haven’t
already done so. Here is the implementation
of stop():

public void stop (String context) {
if (mstart_set)
{

mstop = System.currentTimeMillis();
mstop_set = true;

if (context.length() > 0)
mcontext = mcontext + " to " + context;

else
mcontext = mcontext + " to stop";

}
else

System.out.println (
"You must start the Timer before you

can stop it.");
}

There isn’t much to stop(); it makes sure
you started the timer. Then it gets a snapshot

of the current time and adds information to
the context string.

Retrieving Elapsed Time
Once the timer has stopped, you can

retrieve the elapsed time information. You can
do this with one of several different methods
seen in Table 1.

As you can see from Table 1, I’m very care-
ful to use previously defined methods to
implement other methods. By doing so I avoid
code redundancy and get more consistent
behavior from the various methods.

Here is the implementation of the
elapsed() method:

public long elapsed (String context) {
if (mstop_set == false) stop (context);

return (mstop - mstart);
}

If the developer hasn’t already stopped the
timer, elapsed() calls stop() and returns the
difference between the stop and start values.
It’s important to provide the “raw” elapsed()
method, because a programmer might want to
take that value and manipulate it further by
performing calculations, comparing it to val-
ues stored in a hashtable or formatting a dif-
ferent message.

The elapsedMessage() method is imple-

mented as follows:

public String elapsedMessage (String
context) {

// Shut down the timing ASAP to make
// results more accurate.

long elapsedVal = elapsed(context);
return (mcontext + ": " + elapsedVal

+ " millisecs");
}

The first thing it does is obtain the elapsed
time and, as a reminder, the elapsed() method
calls end() (if it hasn’t already happened).
Then it constructs the standard message by
incorporating the context information.

The toString method is provided so you
can reference a Timer object as part of a
string concatenation and see something sen-
sible. Here is its implementation:

public String toString () { return
elapsedMessage(""); }

It does nothing more than call elapsedMes-
sage(), passing null for the context (you can’t
provide arguments to the toString() method if
you want it to be used automatically by the
Java runtime engine).

Finally, there is the showElapsed()
method. As you can see below, all it does is
display the value returned by elapsedMes-
sage.

public void showElapsed (String context) {
System.out.println (elapsedMessage
(context));

}

Overloadings for Null Contexts
The Timer class also provides a set of

overloadings of all but the toString() method
so you can invoke the methods without pro-
viding any context information (sometimes
you just don’t care, so why should you have
to pass a dummy “” value?):

public void start () { start (""); }
public void stop () { stop (""); }

Figure 2: Enhancing HowFast to provide better content

Method Name Description

elapsed Returns the “raw” value: the number of milliseconds between
start and stop

elapsedMessage Returns a standard, formatted message containing the elapsed
time

toString Returns the string returned by elapsedMessage, but it passes a
null context. In other words, context information must be set in
start() and end()

showElapsed Displays, with a call to System.out.println, the string returned by
elapsedMessage

Table 1: Methods of the Timer class

29JULY 1999

Riverton
www.riverton.com

30 JULY 1999

public long elapsed () { return elapsed (""); }
public long elapsedMessage () { return

elapsedMessage (""); }
public void showElapsed () { showE

lapsed(""); }

These overloadings might seem like an
unnecessary step, but users of the Timer
class will appreciate this kind of effort. Well,
to be honest, they probably won’t appreciate
it because they won’t even notice it. They’ll
take it totally for granted and that’s just fine –
it means you’ve designed your code very well.

Improving Ease of Use of Timer
So are we done? I hope not. The true objec-

tive of this article is, after all, to introduce the
concept of abstract classes and show you
how to take advantage of them. Why would
such a thing be needed to perform timings?
Let’s investigate the needs in performance
analysis a bit more closely.

First, I haven’t created any constructor
methods for the Timer. Yet it seems that
whenever I instantiate a new Timer, I almost
always want to call the start() method for that
object. Why not create a constructor or two
that will automatically set the start time?

Here are the definitions of those construc-
tors:

public Timer (String context) { this.start
(context); }

public Timer () { this.start (""); }

I’ll make use of these in the subsequent
examples.

What else might we want to do? Well, most
of the time when I’m testing the performance
of a program, I don’t want to run that code
just once. I might want to run it many times,
perhaps even thousands, for a number of rea-
sons, including:
• To vary the inputs and study the response
• To ensure that the program achieves a

steady state of performance and returns an
accurate average

• To test for aberrant behavior in the pro-
gram after many executions

If I wanted to run InFile.numBytes multiple
times using the current Timer design, I’d need
to build a script like this:

class HowFast4 {
public static void main (String[] args) {

int count = Integer.parseInt
(args[0]);

Timer bruteForce = new Timer();

for (int execnum = 1; execnum <=
count; execnum++) {
int result = InFile.numBytes
("c:\\temp\\te_event.tps");

}

bruteForce.showElapsed("Countem");
}

}

When I invoke the class, I pass the number
of times to run the code as the first and only
argument, as in:

java HowFast4 100

and I get a line of output that looks like this:

Elapsed from start to Countem: 1723 millisecs

The main method calls the Integer.par-
seInt method to return the numeric value
of the integer represented by the contents
of the given string object, which is the first
element in the string array, args. Then I use
this value (the count element) to limit the
execution of a numeric FOR loop. Notice
that I’m assuming the presence of the
Timer constructor to automatically call
start().

If I want to compare the performance of my
two different implementations, I end up with
code similar to Listing 5, which results in an
output like this:

E:\Articles\Java>java HowFast5 250
Elapsed from start to Countem: 18247 millisecs
Elapsed from start to Available: 150 millisecs

As I write this code, it strikes me that I’m
engaged in a fairly awkward, repetitive
process. What if I want to compare three of
four implementations? And wouldn’t it be nice
to see not only the total elapsed time, but also
the average amount of time it took for each
execution?

Notice that I execute the same body of
code again and again. Here, for example, is all
of the “generic” code that performs the tim-
ing:

Timer myTimer = new Timer();

for (int execnum = 1; execnum <= count;
execnum++) {

codeToTest; }

myTimer.showElapsed("Context");

Doesn’t it seem that I should be able to cre-
ate a template of the repetitive stuff and then
just “fill in the blanks” in the template when I
need it? Well, I can do precisely that with an
abstract class.

Driving Timer to Abstraction
Before I go any further, I must pay proper

homage to the second edition of Arnold and
Gosling’s The Java Programming Language
published by Addison Wesley, where I got
started on this idea by reading page 76. To
explain abstract classes, they provided the
following example:

abstract class Benchmark {
abstract void benchmark ();

public long repeat (int count) {
long start = System.currentTimeMillis();
for (int i = 0; i < count; i++)

benchmark ();
return (System.currentTimeMillis() -

start);
}

}

They then extended that abstract class
with a “do nothing” benchmark that I must
admit I found hard to understand. After play-
ing around with it for a while and reading
through other books, I finally felt comfortable
enough with abstract classes to design my
own benchmarking class -- built on top of the
Timer package.

Back to “abstract class.” What is it? How
does it help me get my job done? A class is
considered “abstract” if it has one or more
abstract methods. An abstract method is a
method that has a signature or header but no
implementation or body. Here’s a very simple
abstract class:

abstract class Beliefs
{

abstract String aboutGod ();
abstract String dayOfRest ();

}

Figure 3: Using the Timer class to compare performance of different implementations

31JULY 1999

Tidestone
www.tidestone.com

32 JULY 1999

What am I expressing in this class? Human
beings have belief systems, but their beliefs
differ according to many factors, in this case
religious affiliation. If I’m a Jew, my belief
about God differs from that held by a Christ-
ian. The day of the week that is considered my
Sabbath or day of rest is also different. On the
one hand, humans have common characteris-
tics: views on God and the day of rest. On the
other hand, the actual content behind those
characteristics (i.e., implementation of the
method) is different for each religion or belief
system.

Once I have defined these general charac-
teristics and created “placeholders” for their
implementation, I can extend my abstract
Beliefs class for particular faiths (or lack
thereof) as shown in the four classes in Listing
6, which generates this output:

Muslims are sometimes found reading the
Quran on Friday
Jews are sometimes found reading the Torah
on Saturday
Christians are sometimes found reading the
Bible on Sunday
Atheists are sometimes found reading the
Non-Existent on Not Applicable

Notice that even though I create an array
of Belief objects (called believers), I can
assign subclasses of Beliefs (Jews, Muslims,
etc.) to that array without casting to the
Shape class. In addition, I can invoke the
holyBook() and dayOfPrayer() methods for
these Shape objects (the elements of the
believer array) -- and the methods defined in
each of the various subclasses will be
invoked.

Thus I can write programs that don’t
explicitly reference subclasses (Jew, Muslim,
etc.) and are therefore more general, but still
take advantage of the more specific function-
ality. This also means that as I extend the
abstract class, Beliefs, to other subclasses,
existing programs that reference only the
Beliefs class will run for the new subclasses as
well.

That is a brief explanation of abstract

classes. Let’s see how we can apply this Java
feature to my Timer class.

The RunTimer1 Class
Earlier I identified a typical series of steps

taken when using the Timer class: instantiate
a Timer, start the clock, run your code, stop
the clock and display elapsed time. I then dis-
covered a more complex requirement for use
with Timer: run the code n times to obtain a
more accurate picture of the code’s perfor-
mance. Now my objective is to allow a devel-
oper to take advantage of this more sophisti-
cated testing model without having to write
the FOR loop and other logic each time.

This is a somewhat tricky prospect. The
code to be tested must be placed inside the
FOR loop, but I don’t want to have to make
them write the FOR loop (and other function-
ality, as we’ll see). Conceptually, I want to
build a method that implements the FOR loop
but contains a kind of “placeholder” for the
developer’s code.

This is exactly where the abstract class
comes in handy. I’m going to extend Timer to
an abstract class (remember: Timer is not
abstract) called RunTimer1, as follows:

abstract class RunTimer1 extends Timer {
...
}

As you can see, I extended a nonabstract
class to an abstract class. For a class to be
abstract it must contain at least one abstract
method. In fact, it contains two methods, only
one of which is abstract:

timeIt()

This is the abstract method of the class
and therefore contains no implementation. It’s
the “placeholder” program run by repeat(). It
accepts a single object in its parameter list,
which is why the class is called RunTimer1 (1
argument version). Here is the complete defi-
nition of timeIt() in RunTimer1:

abstract void timeIt (Object arg1);

Since it’s abstract, it presents only the
header information – everything you need to
know to be able to invoke the method. But
since it’s abstract, you can’t invoke it as an
instantiation of RunTimer1; what would the
Java runtime engine execute?

repeat()

The method starts the timer, executes the
FOR loop calling timeIt() and then shows
elapsed time, as well as some new informa-
tion: total number of iterations executed and
the average elapsed time per iteration. Here is
the implementation of repeat():

public void repeat (String context, int count,
Object arg1)
{

super.start();

for (int execnum = 0; execnum < count;
execnum++)
timeIt (arg1);

super.showElapsed(context);
System.out.println ("Number of iterations:

" + count);
System.out.println (

"Per iteration elapsed: " +
(float)super.elapsed() / (float)count);

}

As you can see, it calls various methods of
the superclass, Timer, as it moves through the
steps previously described. (I fully qualify the
method invocations to show the reliance on
the superclass method, but it’s not neces-
sary.) The object argument, arg1, is simply
passed in to the abstract timeIt() method.
After it calls showElapsed() to display the
elapsed time, it offers some “added value”
appropriate to this looped execution by dis-
playing additional information available only
in RunTimer, where it knows about the num-
ber of iterations.

Notice that the body of the loop consists
of a call to the timeIt() method. But what good
does that do? The timeIt() method doesn’t
have a body. In fact, it’s impossible to even
instantiate the RunTimer1 class much less
invoke its repeat() method. You can’t instanti-
ate an abstract class. Why? Consider the fol-
lowing class:

class ZoomZoom
{

public void main (String args[])
{

RunTimer1 myTimer = new RunTimer1();
myTimer.repeat ("My test", 100, "Who

Knows?");
}

}

This class will fail to compile with this error:

ZoomZoom.java:5: class RunTimer1 is an

Figure 4: Enhanced output from the Timer class to improve usability

33JULY 1999

Insignia
www.insignia.com

34 JULY 1999

abstract class. It can’t be instantiated.

What sense could it possibly make anyway?
myTimer.repeat calls timeIt() and...there’s
nothing there to run. The only thing you can do
with an abstract class is extend it to another
nonabstract class. Then we’ll be able to
obtain the precise desired behavior: my sub-
class of RunTimer1 will implement its own
version of timeIt(), and when it invokes
repeat(), the subclass’s code will execute and
be timed. And that is pretty darn cool.

Extending RunTimer1
I’ll extend RunTimer1 so I can see how long

it takes to read the number of bytes in a file.
Here is my TestInFile class (separated by
explanations of the code; see TestInFile.java
for the class as a whole):

class TestInFile extends RunTimer1 {

TestInFile is a subclass of RunTimer1; an
instantiation of TestInFile (as is seen in the
main() method) will thus inherit two meth-
ods, timeIt() and repeat(). One of them,
repeat(), is “ready to go,” but the timeIt()
method was never implemented in Run-
Timer1. That’s okay – we’ll just implement it
in TestInFile.

void timeIt (Object arg1) {
int result = InFile.numBytes

(arg1.toString());
}

This very first method in the class has the
same signature as timeIt in RunTimer1. This
overloading, however, adds an implementa-
tion that defines timeIt to be a “pass-through”
to call the InFile.numBytes() method. It con-
verts the single object argument to a string
that contains the file name.

When I extend an abstract class, I must
provide an implementation for each and every
abstract method in my abstract superclass (in
this case, just one). If I don’t, then my sub-
class is automatically an abstract class, even
if it’s not declared explicitly as such. Now my
subclass will compile and I’ll be able to run
the repeat() method. So let’s now take a look
at the main() method and explore how it does
its testing:

public static void main (String[] args) {
TestInFile testIt = new TestInFile();
testIt.repeat (
"Countem", Integer.parseInt (args[0]),

args[1]);
}

} // End of TestInFile package

First, main() instantiates a TestInFile
object. I can do this since TestInFile extends
an abstract class and provides an implemen-
tation of its abstract methods. I then call the
inherited repeat() method, passing in the con-
text or name of the test, the number of itera-

tions and the name of the file. When repeat()
executes, it calls timeIt(). Then the wonders
of polymorphism come to the fore, so TestIn-
File’s timeIt() is executed rather than Run-
Timer1’s timeIt() abstraction.

Here is the output from an execution of
TestInFile:

E:\Articles\Java>java TestInFile 250
c:\temp\te_event.pks
Elapsed from start to Countem:

18857 millisecs
Number of iterations: 250
Per iteration elapsed: 75.428

Comparing Performances with
RunTimer

As noted earlier, one way I find this sort of
timing mechanism to be most useful is in com-
parisons of the performance of different
implementations. You saw this earlier with my
numBytes and NumBytes2 programs. Can I
use RunTimer to execute each of these and
compare the results?

Not as far as I can tell. I’d need to replace
the abstract timeIt with two different imple-
mentations, one calling numBytes and anoth-
er calling numBytes2. That doesn’t seem pos-

sible. I could, however, create two different
classes and run them separately, generating
output like the following:

E:\Articles\Java>java TimeNumBytes 250
c:\temp\te_event.pks
Elapsed from start to Countem:

18297 millisecs
Number of iterations: 250
Per iteration elapsed: 73.188

E:\Articles\Java>java TimeNumBytes2 250
c:\temp\te_event.pks
Elapsed from start to Countem: 161 millisecs

Number of iterations: 250
Per iteration elapsed: 0.644

This works, but it’s not as clean as I’d like.
Create a new class just to test a different
implementation? Yuck! An alternative is to
create another version of the RunTimer1 class
that has two abstract methods (or, to extend

the concept, n methods to test n implementa-
tions) and two repeat methods, as in Run-
Time1x2 (timeIt1 and timeIt2 each accept 1
argument) in Listing 7.

Then I can create a class to time both of
my implementations using the abstract class,
as seen in Listing 8.

Here is the output from running this class’s
main() method:

E:\Articles\Java>java TimeBoth 250
c:\temp\te_event.pks
Elapsed from start to Countem: 19228 millisecs

Number of iterations: 250
Per iteration elapsed: 76.912

Elapsed from start to Available: 160 millisecs
Number of iterations: 250
Per iteration elapsed: 0.64

This isn’t the ideal solution as far as I’m
concerned. You’d have to create a new ver-
sion of RunTimer for each combination of the
number of arguments to timeIt() and the num-
ber of implementations you want to compare.
There may be a more flexible way to support
this variability, but I haven’t found it yet.

Summary
This article has explored:

1. How to move beyond learning a specific tip
to building a utility that can be used with
ease and flexibility. In particular, after dis-
covering System.currentTimeMillis() and
figuring out how to use it to calculate
elapsed time, I encapsulated that function
within the Timer class. The simple methods
of this class make it much easier to do per-
formance analysis.

2. The advantages of abstract classes: if you
have identified method signatures that
apply to multiple subclasses but have dif-
ferent implementations in each subclass,
use abstract classes to hide those distinc-
tions. In the case of the timing mechanism,
the RunTimer abstract class allows devel-
opers to avoid writing complicated bench-
marking code again and again.

If you have comments on the techniques
discussed in this article, or an idea about how
to build a class that would have more flexibil-
ity when comparing alternative implementa-
tions, please let me know.

About the Author
Steve Feuerstein is the author of several books on the
Oracle PL/SQL language, including the best-selling
Oracle PL/SQL Programming from O’Reilly and
Associates. Chief technology officer at RevealNet,
Inc., he is a presenter and trainer of PL/SQL and can
be reached at feuerstein@revealnet.com.

feuerstein@revealnet.com

“The objective of the
Timer class is to
provide a set of

methods that allows
us to calculate the

performance of
an individual

portion of code”

“The objective of the
Timer class is to
provide a set of

methods that allows
us to calculate the

performance of
an individual

portion of code”

Additional code listings for
this article can be located at

www.JavaDevelopersJournal.com

▼▼▼▼▼▼ CODE LISTING ▼▼▼▼▼▼

35JULY 1999

Elixir
www.elixir.com.sg

36 JULY 1999

Thirteen – or as I pre-
fer it – 26 over 2. Yes,
this is article number

(26 over 2) in the series,
and the more superstitious
of you will know this isn’t
the luckiest of numbers. So
with fingers crossed, let’s
delve into this month’s

rants and raves and see what pops out.
This article has been written all over the

world. I have composed columns on the move
in Sydney, San Francisco, London and even on
a napkin in a Tokyo hotel. This month the col-
umn comes to you from both sides of the
Atlantic. It was started in New York and fin-
ished back here in Scotland. I was up in Toron-
to giving a talk on Java Servlets at this year’s
WWW8 conference. This is where all the Inter-
net boffins get together and generally discuss
the emerging technologies that we are likely to
see over the next 12 months.

As you can probably guess, XML featured
quite heavily. I’m not too sure about this new
technology at the moment; I’m sitting on the
fence before making a move. If you’re unaware
of XML, it’s basically a means of transferring
data in a format that anyone can make use of,
since the information on how the data is orga-
nized is contained within the same file. Howev-
er, it suffers from a lack of global standards on
how data is going to be moved about. Sure, the
actual XML standard is rubber-stamped, but
two Web sites offering catalog information
would have to agree on the same data format
to make it of real use. On a one-on-one basis,
XML seems to be finding applications within
large corporate environments where they only
need to transfer data between locally con-
trolled boxes. How XML will fare in the open
network is anyone’s guess.

At the moment I’m camping out in SYS-CON’s
Web Services Department for the week until I go
home. This is much appreciated and very wel-
come as it allows me to be a fly on the wall in
somebody else’s office. It’s quite strange sitting
here watching Americans at work. You’re defi-
nitely a funny breed, aren’t you? I have never
met a friendlier race of people in my life. It’s
quite spooky...and only goes to confirm what we
Europeans believe, which is that everyone
exhibits at least some of the behavior seen on
“The Waltons.” (As I pen this, it’s just dawned on
me that we even have a Mary Ann floating
around. My God, this is Walton Mountain!)

JavaOne is only a matter of a couple of
weeks away, and by the time you read this it
will all be over. I’m sitting here arranging ses-
sions for the SYS-CON radio broadcast, which
we’ll do from the floor. So, to those of you that
have come up and said Hello, and really told
me what you think of this column, I thank you
– I think – in advance. I’ll have a full update in
the next column.

Thread.stop();
A couple of days before stepping on the

plane to come here, I was wrestling with an
absolutely evil problem. Fortunately, I got it
fixed in a matter of hours before leaving; oth-
erwise it would have bugged me the whole trip.
Let me explain my wee problem and hopefully
preempt your having a similar experience.

Speaking to you Java developers out there,
we’ve all heard about the wonders of garbage
collection and how we don’t need to worry
about such things as freeing objects and mem-
ory anymore. In fact, it’s one of Java’s main sell-
ing points. A wee word of caution though –
don’t believe everything you read.

One of our clients, Focus Digital, has just
launched a new, exciting e-business–based
Web site here in the UK, www.bargainfind-
er.co.uk/. It seeks out the cheapest price for a
particular item from a host of merchants. We
developed the technology, using Java Servlets
that essentially perform a number of concur-
rent searches, collating the results in a real-
time environment to minimize the amount of
waiting experienced from the user. The final
system works like a dream and is very efficient
under heavy load.

It wasn’t always efficient, however. Let me
explain why.

Since we had a number of concurrent prob-
lems to satisfy, we developed a whole system

based on the java.lang.Thread class that would
spawn off the necessary amount of threads and
coordinate the results between them.

During development we had no problems.
In fact, the system was running extremely fast
and we were very pleased with our initial
design. However, a queer problem raised its
head after a period of time. Around the three
thousandth database query the system would
simply hang and not respond to any more
client requests. Since it was consistent at the
three thousand mark, we automatically looked
toward the database as being the problem. It
was a place to start, and at that moment it was
all we had.

A number of belts and braces went round
our database manager class. But no difference.
We even took the bold step of rewriting the
underlying class to incorporate a number of
enhancements. We have a very stable database
pool manager that has evolved over a number
of years and forms the heart of most of our pro-
jects. So I was reluctant to accept that some-
thing was wrong with this piece of software. It
was performing admirably well in all other
clients’ products so why should it start going
pear-shape now?

Redeveloping it did speed things up a little,
and with the new version all tested we inserted
it into the main problem. No difference. Bugger!
Oh well, at least we got a new improved ver-
sion of the database manager, so we can’t look
at it as a complete waste of time.

Scratching our heads for a while didn’t
yield anything useful. Nothing left but to devel-
op a watchdog thread that would periodically
print out the status of various core parts of the
system. We’ve used such devices in the past to
great success, but in this instance nothing new
was highlighted. One thing we did notice, how-
ever, was that even our watchdog thread
stopped printing out information after the
three thousandth query. The plot thickens.

Eliminating the database from the problem,
Ceri started to look at the process usage under
Linux to see if anything obvious was going on.
Ceri noticed that memory was being used up
at a tremendous rate, but was never released.
This was not a major concern to me, knowing
that most JVM implementations rarely give
memory back to the system when allocated.
The memory internally may not be all used,
but as far as the operating system is con-
cerned the JVM has it all. Time to move on.

We did some more testing, but this time,

Can Someone Please Take Out the Trash?
The garbage is always coming and going in the Java business

“…either the JVMs are
not handling threads…
or the documentation

is incorrect, leading
developers to believe

threads are just classes”

by Alan Williamson

37JULY 1999

Object Domain
www.objectdomain.com

38 JULY 1999

instead of hitting the server with just one
process, we flooded it with over 20 requests
per second to see when it would break. It still
broke at the three thousand mark, but it got
there a hell of a lot quicker. Oh well, if anything,
it would speed up the debugging procedure.

Still thinking about the information Ceri had
thrown up, I decided to modify our watchdog
timer to print out the virtual memory usage
from the point of view of the JVM. In addition
to this – on a whim, it has to be said – I decid-
ed to print out the number of active threads in
the JVM. We ran the tests again, not expecting
a great deal. But an interesting picture started
to emerge.

The memory was indeed being used up, as
was the number of threads. However, the mem-
ory did go down, but the number of active
threads? Never. They never once moved down
the way. Aha! Caught the bugger! I mustn’t be
catching an exception in a thread and it’s obvi-
ously crashing. How remiss of me! Not like me
to miss such things. But after inspection of all
our thread-based classes, all the proper
try–catches were being dealt with. So what was
going on? I looked carefully at each of my
thread classes, but nothing untoward was shin-
ing through. I then took the drastic step of plac-
ing println(...) at the end of each run() method
just to confirm that the threads were running
to their logical end and weren’t caught in an
infinite loop somewhere.

Ran the tests again, and all threads were
completing, but the active thread count still
continued to grow. I looked back at the docu-
mentation on threads and, as I expected, the
garbage collector cleared up threads after they
finished and went out of scope. No need to call
the stop() method, and since Java 2.0 has dep-
recated this method I looked elsewhere.

Calling the garbage collector manually did-
n’t help one single bit. What the hell, I thought,
let’s call the stop() method after each one.
With a little reworking of some logic, all creat-
ed threads were having their stop() method
called. Ran the tests again and lo and behold,
the thread count went up and down. Hooray.
Problem solved.

Couldn’t believe it. We thought, “Maybe it’s
the JVM on Linux,” but after setting up with the
official Sun JVM under NT, we found the exact
same behavior. Now we can conclude one of
two things: either the JVMs are not handling
threads properly – they seem to escape the
attention of the garbage collector – or the doc-
umentation is incorrect, leading developers to
believe threads are just classes. I’m not sure
which side of the fence I’m going to come down
on, but I’d be interested if any of you have
found the same thing or seen similar behavior.

Mailing List
Which leads us nicely into my monthly plug

of our mailing list. It’s good to see the list grow-
ing, and some of the topics that are debated
are very interesting. I’d be very keen on hear-
ing your views on this threading issue, so
please join and let’s discuss it. Send an e-mail

to listserv@listserv.n-ary.com with subscribe
straight_talking-l in the body of the e-mail.
From there you’ll get instructions on how to
participate on the list.

Salute of the Month
Last month I started a new feature that

takes a person and gives them the “Salute of
the Month” for work above and beyond the
call of duty. This month I have to give a group
salute to the whole team at the SYS-CON
offices for making my time there extremely
enjoyable. I’d like to single out the main man,
Fuat Kircaali, for taking care of me the whole
week and for a “Fuyacht” boat trip I’ll never
forget. When I look at postcards of New York, I
still can’t believe I had the honor. This more
than makes up for leaving a kilted Scotsman
stranded late at night in Newark Airport, and
having a brush with the law later that night in
Pearl River. ’Nuff said!

Book Review
This month I’m in the middle of the Oracle

book that profiles the ups and downs of Ora-
cle and Mr. Ellison. Not being a great fan of the
way Oracle works, I’ll leave the review till I fin-
ish the book. But I have to admit to not being
able to put it down. What a read! I’ve read
many of these types of books, and like many
of you entrepreneurs I get a lot of inspiration
from seeing how the big companies became
big companies. But the one thing I’ve never
read is how they broke into their first million.
We hear the stories only after they have mul-
timillion sales, and as interesting as this is, I’m
sure there are equally as many tales and
advice to be told at the start of the journey as
opposed to halfway through. So, to any big
CEOs out there that read this column, we
want to know the details of the basic steps.

Maybe Ellison, Grove, Gates and Kaplin can
do a George Lucas and release a prequel to
their books so we can see how the story start-
ed. The only book I’ve read that really goes
through the early steps is from Richard Bran-
son regarding the Virgin empire, but, sadly, this
isn’t computing-related. So come on, you big
CEOs: tell it to us from the start.

I’d better finish up as I’m running out of
paper, and now that I’m back in Scotland it has
a wee bit longer distance to travel to get back to
New York. So in the time-honored tradition, as I
look back at Walton Mountain, I shall bid you
farewell....Goodnight, Mary Ann....Goodnight,
Jim-Babb....Goodnight, M’lou!

About the Author
Alan Williamson is CEO of n-ary (consulting) Ltd. A
Java consultancy company with offices in Scotland,
England and Australia, they specialize solely in Java
at the server side. Alan is the author of two Java
Servlet books and contributed to the 2.1 Servlet
API. He can be reached at alan@n-ary.com
(www.n-ary.com) and welcomes all suggestions and
comments.

alan@n-ary.com

Soft-
Wired

www.softwired-inc.com

39JULY 1999

Cyrus Intersoft, Inc.
www.cyrusintersoft.com

41JULY 1999

Object International
www.oi.com

L ast week a friend of
mine who lives in
Hong Kong was

telling me how advanced
the business environment
is there. Folks that have
Internet access actually
use the business facilities
the Internet offers. For

example, people use the Internet for their regu-
lar grocery shopping. They place orders via the
Internet, use their credit cards for the transac-
tions and have the goods delivered to their
home. Everyday business is conducted on the
Web. For some reason commerce in the United
States hasn’t advanced to that level. The tech-
nology is here and has been for a while; howev-
er, people don’t completely trust the Web for
business transactions.

Security is the primary concern of people
and businesses that commit to using the Inter-
net for conducting business transactions. An
Internet transaction is conducted between two
parties, and each party needs to have a certain
level of trust in the other. For electronic trans-
actions to be the primary mechanism for con-
ducting business, the level of trust needs to be
as high as – if not higher than – that of person-
to-person transactions. The parties involved in
electronic trade also need to have a high degree
of trust in the medium used for the information
transfer, namely the Internet.

This month we’ll take a look at the security
issues involved in electronic trade, some of the
technologies used for providing security in dis-
tributed systems and how Java leverages these
technologies. Although my focus is on Java and
doesn’t cover Internet security in detail, I’ve
provided a brief introduction to some of the
related concepts where required.

Security Concerns for Business
Applications

Internet commerce typically involves two or
more machines connected via a public medi-
um. Some of the security issues in this envi-
ronment are:
• Private and sensitive information exchanged

between the two machines may by viewed by
some third party that’s monitoring the trans-

mission channel.
• The originator of the transmission may not

be who he or she claims to be.
• The recipient of the information may not be

who he or she claims to be.
• The data may be corrupted for malicious

purposes during transmission.

Business applications in general have the
following categories of security concerns:
• Security of content: This addresses the pro-

tection of data at its point of origin, before it’s
transmitted or received. Parties conducting a
business transaction need to be sure that the
data isn’t available to unsolicited parties for
viewing or manipulation.

• Security of communications: The data needs
to be protected against tampering and visi-
bility during the process of transmission.

• Security of the corporate computing infrastructure

The above concerns address the integrity of
the data during the electronic transaction
across the Internet. The data itself could have
malicious programs embedded in it. Thus, even
after it passes the security checks for correct-
ness, it could cause harm to the local environ-
ment. This usually happens in the case of newly
installed or downloaded software.

Ensuring an acceptable level of security for
each of these categories requires the following:
• Proof of identity (authentication): Confirm that

the source and destination parties are who
they say they are.

• Data integrity: Ensure that the data hasn’t
been tampered with since the originator cre-
ated it.

• Privacy: Ensure that the data isn’t available to
a third party (one not involved in the trade)
for reading or manipulating during the trans-
action.

• Nonrepudiation: Retain proof that a business
transaction did take place. Nonrepudiation
prevents a party from denying its participa-
tion in a transaction.

AAA
When the acronym AAA is used in the con-

text of security, it doesn’t stand for American
Automobile Association (although different

security concerns are addressed by that orga-
nization). AAA stands for authentication, autho-
rization and accounting – three mechanisms to
ensure the security of a distributed computer
system during remote access.
• Authentication: Authentication is required on

secure systems to ensure that persons log-
ging in are who they say they are. Authenti-
cation is also required for a message
exchange to verify that a particular message
has not been fabricated or altered in transit.

• Authorization: Authorization determines what
users can do once they are authenticated.
Once the person is logged in, authorization
controls are used to restrict their access to
various resources based on the rights and
privileges assigned to their user accounts or
the objects they access.

• Accounting/logging: Auditing is the collecting
and monitoring of events on servers and net-
works for the purpose of tracking security
violations and keeping track of how systems
are used. A network auditing system logs
details of what users are doing on the net-
work so that malicious and unintended activ-
ities can be tracked.

Security Concerns in the Java
Platform

The Java platform supports a new paradigm
for distributed computing. While this enables
the creation of very powerful and extensible
applications, it also introduces new concerns
about Internet security for applications written
in Java. These concerns are addressed by
Java’s Security APIs and by the Java Virtual
Machine.

Java provides rich support for distributed
commerce by being the application building
platform for full-scale client/server systems.
Java components that constitute a complete
commerce application may exist as a combina-
tion of applets on the client, servlets on the
server and client or server Java applications.
Commerce services may be exposed in a dis-
tributed topology via CORBA or RMI. Data may
be transmitted between tiers of an n-tier appli-
cation via IIOP (Internet Inter-ORB Protocol),
HTTP or raw sockets. Figure 1 illustrates a dis-
tributed topology in the Java environment.

These different facets of a Java application
give rise to several potential security loop-
holes. A security solution for a distributed

Securing Java Commerce

by Ajit Sagar

How Java leverages the technologies used to
provide security in distributed systems

40 JULY 1999

42 JULY 1999

Ajit_Sagar@i2.com

application needs to address all these loop-
holes since the system is only as strong as its
weakest link. In other words, a security solution
needs to be holistic. The Java Security APIs, the
Java Cryptography Architecture (JCA) and the
Java sandbox, ClassLoader and SecurityManag-
er all work together to ensure security in a Java
application.

Protecting the Java Client
Environment

The ability to dynamically download and
run Java applets over the Internet is one of
Java’s most powerful features supporting dis-
tributed computing. However, downloaded
code is untrusted code from the client’s per-
spective, and this opens up the following kind
of security risks:
• System modification: The applet can make

changes to the browser or the client system
in a harmful way.

• Privacy invasion: The privacy of restricted
information on the client system could be
compromised.

• Denial of service: The downloaded code
could use up system resources and thus
interfere with the normal operation of the
system by denying service to other, more
critical system processes.

Java’s sandbox model addresses these secu-
rity risks. The ClassLoader, SecurityManager
and bytecode Verifier ensure that untrusted
code executes only within a restricted environ-
ment. Within this environment the code can’t
access resources in a system that’s sensitive
from the security viewpoint. The code execut-
ing within the sandbox has no local disk access,
linkage to local code or printing facilities.

However, placing these restrictions also pre-
vents applets from performing more useful
functions and severely limits their capabilities.
The Java security model is built around the con-
cept of a protection domain. The applet sand-
box is a protection domain with very tight con-
trols. Java applications, on the other hand, exe-
cute in an environment with no control other
than those imposed by the underlying operat-
ing system. Java 1.1 relaxes the security model
by introducing the concept of digitally signed
applets. Signed applets are treated as trusted
code since the signature ensures that the
applet was downloaded from a source trusted
by the client.

Data Encryption in Java
Encryption is the process of converting data

from a readable to an unreadable format.
Decryption is the opposite process. Data is
encrypted when transmitted from the sender to
the receiver, the premise being that only the
intended recipient knows how to decrypt the
message. Thus data encryption ensures data
integrity and privacy. A discussion of the proto-

cols involved in encrypting and decrypting
data is beyond the scope of this article. Howev-
er, we’ll briefly discuss Java’s support for data
encryption.

The Java security architecture allows secu-
rity algorithms for encrypting data to be
plugged in using a java.security.Provider inter-
face. A security provider is a package that
implements a set of security algorithms, includ-
ing message digest, signing and encryption
algorithms -- three mechanisms for encrypt-
ing/decrypting data.

JDK 1.1 provides general-purpose APIs that
support encryption – Java Cryptography Exten-
sions (JCE) and Java Cryptography Architec-
ture (JCA). JCE comprises a set of additions for
the java.security package that implements
cryptographic streams.

JDK1.1 also introduced the JAR (Java
Archive) format for distributing code. JAR files
are single files with the .jar extension that pack-
age multiple Java files. The files in the JAR can be
digitally signed prior to distribution. This allows
the end user to authenticate the code running on
his or her client machine. The package
javax.security.cert is a Java extension API that
provides support classes for X.509 certificates.

Java Support for SSL
Several communications protocols used in

network communications today add a security
layer to existing communications protocols.
The most popular of these is the Secure Socket
Layer (SSL) protocol used to create secure con-
nections between the client and the server in a
networked environment. SSL was developed by
Netscape to allow their browser and server
products to conduct electronic commerce
securely, and with the confidence that the cus-
tomer’s financial data, such as credit card infor-
mation, could be transmitted over the Internet
without being compromised. SSL attempts to
solve end-to-end transmission security by pro-
viding authentication for both the client and
the server.

SSL support for Java-based applications is
included in many popular Web browsers and
servers. These programs depend on SSL to pro-
vide the necessary encryption when transmit-
ting data across the Internet. In order to use
SSL, “https://” is used in the URL instead of the
traditional “http://”. The “s” in “https” implies
SSL communications.

Similar to Netscape’s SSL, several vendors
also provide SSLSocket and SSLServerSocket
classes that extend the java.net package’s Sock-
et and ServerSocket classes, respectively. The
javax.net.ssl is an SSL API, which is a standard
extension to JDK 1.1 core API. The classes in this
API resemble the java.net socket classes; the dif-

Client
Tier

Applet running
in browser’s

JVM

Application
running in

system’s JVM

Server
Tier

Class
Download

Data in
the “open”
(unsecure)

Sockets
(HTTP) CORBA RMI

Internet

Figure 1: Distributed topology

RMI over HTTP
(Firewall

Tunneling)

Java Applet

Firewall

Web Server
(RMI Server)

Java Application

Internet

HTTP

Secure Network

�
�
�
�

�
�
�
�y
y
z
z

{
{
|
|�
�
�
�
�

�
�
�
�
�
y
y
z
z
z

{
{
{
|
|

Figure 2: Firewall tunneling

43JULY 1999

The Theory
Center

www.theorycenter.com

44 JULY 1999

ference is that when sockets from this package
are used, they establish secure connections.

Java Servlets
Java servlets are Java classes that are

loaded and run by Web servers. While they
aren’t subject to the same restrictions as
applets, they’re only capable of serving HTML
to the client. Servlets are a popular mechanism
for accessing system resources and services on
the server. Since they run within the Web serv-
er, the built-in safety features of the server
ensure secure execution. Since they’re not

downloaded classes, they don’t have the
“trust” issue that applets do.

Java Access Through a Firewall
A firewall is a computer service that links

two or more networks and enforces some
access control policy between them. It can be
implemented in hardware, software or a combi-
nation of both. Companies implement a firewall
as a front end to their corporate intranet to con-
trol access to their computer resources. These
resources are said to sit “behind” the firewall.

When working with a Java-based architec-
ture, firewalls control the loading of Java
applets to a client and network accesses by
Java applets to a server. Java applets are
accessed using HTTP as the transport protocol.

If the security policy of the firewall is to allow
HTTP traffic to pass through, the applet or the
JAR housing the applet will be like any other
component of a Web page. If HTTP is disal-
lowed, then downloading class files is going to
be very difficult. Most firewalls allow protocol
access via well-known ports (e.g., HTTP via
port 80, FTP via port 21). If an application needs
to communicate using other protocols, they’ll
have to “tunnel” that protocol within the HTTP
connection.

In firewall tunneling the communication pro-
tocol used by the application is wrapped in
another protocol (like HTTP) so it can pass
through the firewall. Behind the firewall a spe-
cial program, called a gateway, is used to
extract the contents of the actual protocol. For
example, in the case of RMI, JavaSoft provides
the RMI-CGI Gateway, a program that allows the
RMI connection to pass through firewalls. Fire-
wall tunneling in the context of a Java environ-
ment is illustrated in Figure 2.

RMI Security
Java’s RMI allows distribution of Java

objects across different machines. RMI’s RMISe-
curityManager and RMIClassLoader can be
used to impose strict security policies on Java
objects exchanged across the network. Since
encryption and authentication are not part of
RMI, new security issues are opened up when
RMI is used across the Internet.

Additional issues need to be considered
when the RMI client and server are connected
through one or more firewalls. As mentioned
earlier and illustrated in Figure 2, JavaSoft’s
RMI-CGI Gateway may be used for firewall tun-
neling. Typically, RMI is tunneled over HTTP.
However, if a CORBA environment is used, RMI
may be tunneled over IIOP. A detailed discus-
sion on RMI tunneling warrants a separate dis-
cussion and is beyond the scope of this article.

Trading Places
This has been a quick whirlwind tour of

some of the security issues involved in using
Java for distributed architectures. Security has
many other aspects I haven’t even begun to
cover. One of the main things to remember is
that the designers of the Java platform treated
security as one of their primary design criteria.
Hence Java tends to address these issues in a
much better and more holistic way than other
computing platforms. That’s one of the many
reasons Java is being used to design various
tiers of distributed commerce systems.

About the Author
Ajit Sagar, a member of the technical staff at i2
Technologies in Dallas, Texas, holds an MS in
computer science and a BS in electrical engineering.
He focuses on Web-based e-commerce applications
and architectures. Ajit is a Sun-certified Java
programmer with nine years of programming
experience, including two and a half in Java.
You can e-mail him at Ajit_Sagar@i2.com.

Specialized
Software

www.specializedsoftware.com/jdj

Ajit_Sagar@i2.com

45JULY 1999

Host Pro
www.hostpro.com

JULY 199946

This is the second in a series of articles
focused on using some of the prominent Inter-
net and Java technologies to develop a Ticket
Store application. In the last issue of JDJ we
defined the APIs and technologies and the net-
work topology that would be used to develop
the Ticket Store. We also walked through
skeletal definitions of the classes used to
implement this application. Now we’ll add
some meat to these classes.

We’ll also define some workflows and sce-
narios for our application, with emphasis on
the design of the objects for the middleware
tier of the store. Our focus will still be on the
purchase of tickets via an online travel agent
that gets quotes from different airlines and
presents the Internet user with the best
quote. The online store portion of our appli-
cation will be discussed in the next article in
the series.

The UI design for this application isn’t a
major part of our Java-based design. A basic
browser UI will be developed for the end user.
In corresponding issues of ColdFusion Devel-
oper’s Journal (Vol. 1, issues 4–6) we’ll devel-
op the more sophisticated and personalized
UI in parallel using ColdFusion. I’d like to reit-
erate that as this isn’t a real-world applica-
tion, several decisions made for the design
will be oversimplified, their primary purpose
being to illustrate how the components
defined here can be integrated into a distrib-
uted application.

Of the four tiers of the Ticket Store applica-
tion described in the last article, the Service
Access tier, and specifically the Ticket Reser-
vation and Sales Broker, will occupy most of
our attention. As defined in last month’s arti-
cle, the Service Access tier is a middleware

tier that accepts service requests from the
Merchant Server tier, routes them to the
Application Services tier and serves back the
response to the Merchant Server tier. The
Merchant Server tier adds in user-specific
data and sends back the response to the user
interface.

Ticket Reservation and Sales
Broker Requirements

The Ticket Reservation and Sales Broker
(we’ll call it “Broker” from this point) is actu-
ally our simulation (albeit oversimplified) of a
real-life ticket agent. The software modules
that make up this tier attempt to duplicate the
base functionality of a human ticket agent
who would typically gather information about
the end user’s (user’s) flight requirements,
search in his or her reservation system for
flight availability and prices, and get back to
the end user with a quote for the flight. Thus
the main functions of the Broker are:
1. Accept a request for a flight from the user.
2. Define search criteria for getting flight
quotes.
3. Search for available flights based on the cri-
teria.
4. Obtain quote(s) from the reservation sys-
tem.
5. Add promotions or discounts on the price
based on the user’s purchase history.
6. Return the quote(s) to the user.
7. Accept a reservation request from the user.
This includes getting his or her credit card
information.
8. Reserve the seat(s) for the user
9. Return a confirmation to the user.

This is a simple workflow that runs through
the system in sequential fashion. We’ll imple-
ment this workflow in our system, ignoring
other functionality such as canceling a reser-
vation, etc. The idea is to demonstrate how
data flows through our Ticket Store from the
end customer to the back office and back. Fig-
ure 1 illustrates the use cases for the Broker.
The workflow is illustrated in Figure 2.

Class Design
Now let’s define the classes involved in this

set of transactions from the Broker’s point of
view. For now, we’ll forgo discussion on the UI
and assume that the user’s input somehow
arrives at the Broker. Allaire’s ColdFusion will
be used to develop a more sophisticated UI.
(This will be discussed in issue 5 of ColdFu-
sion Developer’s Journal.)

Step 3 of the workflow defined above is
encapsulates the main functionality of the
Broker. Let us break this step down and iden-
tify the classes that we will need to provide
this functionality. The classes needed for the
design of the Broker and their function are
summarized in Table 1. The relationship
between the classes is illustrated in a class
diagram in Figure 3. The classes and code list-
ings are described below.

TicketBrokerServlet
This class was defined in last month’s arti-

cle as the TicketServlet. I’ve renamed it here
to better indicate its functions, and I’ll also
expand on its functionality. The TicketBro-
kerServlet is the crux of the Broker. It receives
a ticket request from the Merchant Server,
packages it into a query, submits it to the Ser-
vice Access tier, receives ticket quotes and

Part 2
Working Together:

Competing, yet complementary, technologies
by Ajit Sagar

AN ONLINE AIRLINE
TICKET STORE USING
JAVA AND COLDFUSION

JDJ FEATURE

47JULY 1999

Inetsoft
www.inetsoftcorp.com

tious airline carriers in the Ser-
vice Access tier – SeemaAir,
KarunaAir, NitiAir and ApuAir.
SeemaAir makes its prices avail-
able via a simple Socket inter-
face. KarunaAir exposes its ser-
vices via an RMI service. NitiAir
uses a CORBA server. ApuAir
offers a service via a Servlet, i.e.,
it supports a URL invocation.
TicketBrokerServlet (which rep-
resents the Broker’s connection
layer) sends the TicketRequest
to each of these carriers and
waits for responses on each of
them. When it receives all the
responses, it uses the Ticket-
Pricer (described later) to send
back the best quotation. The net-
work connections between the

Broker and the airline compo-
nents in the Application Services
layer are illustrated in Figure 4.

Since the Broker supports four
kinds of services, it creates four
clients, one for each service.
These clients are instantiated by
the TicketClientManager class,
which establishes and manages
connections to the different air-
line carriers:

if (clientManager_ == null)
clientManager_ = new

TicketClientManager();

The service() method of the
TicketBrokerServlet instantiates
the TicketClientManager. It then
calls a getQuotes() method on

this instance. The method
getQuotes() returns a vector of
TicketQuote objects. The four
client classes (SocketTicketClient,
RMITicketClient, CORBATicket-
Client and ServletTicketClient)
and the TicketQuery and Tick-
etQuote classes are described
later in this article.

The next method call in the
service() method is to the
method getBestQuote(). A vector
of TicketQuote objects is passed
in as a parameter. The method
getBestQuote() calls static meth-
ods on the TicketPricer object to
get the final price on each of the
quotes obtained from the airlines.
It selects the best price and sends
a new TicketQuote object to the
service() method of the servlet.
The service() method calls the
getQuoteString() method and
passes it the TicketQuote object
that it just got back. The resultant
string is returned to the invoker
of the URL. The string is in the
form of name-value pairs, similar
to the input received by the Tick-
etBrokerServlet.

One of the parameters passed
into the servlet is a
“TYPE=VALUE” parameter. The
“VALUE” can be “QUERY” or
“BOOK”. When the string “Query”
is passed in as an argument to the
servlet, the getQuotes() method
described above is invoked.
When the string “BOOK” is
passed in, the bookSeats()
method is called to actually book
the flight. The bookSeats()
method is described later in this
article under the TicketService
class.

TicketQuery
The user will use certain crite-

ria for his or her flight
query/request. Since this query
will have the same parameters for
all the users (e.g., name, address),
it’s encapsulated in a separate
class called TicketQuery. This
class was defined in last issue’s
article. The TicketQuote class is a
simple class with only getter and
setter methods for the data fields.
The fields in the TicketQuery
class are:
• query ID
• departure city
• arrival city
• begin date
• end date
• no. of seats
• seat class (coach, business,

first class)

• seating preference (window,
aisle)

• smoking preference (smok-
ing/nonsmoking)

Notice that the class has a
“begin date” and an “end date.”
This is because our reservation
system allows a user to specify a
range of days on which he or she
can fly. For customers who have
flexibility on the actual day of the
flight and want to base their
reservations on the cheapest
fare, the system will search for
the cheapest fare available in the
time date range. If the user has no
flexibility concerning the date, he
or she will pass in the same value
for the begin and end dates.

TicketQuote
The TicketQuote class encap-

sulates the response from an air-
line in the Application Services
tier to the Broker. Similar to the
TicketQuery class, the Tick-
etQuote class is a simple class
with only getter and setter meth-
ods for the data fields. Some of
the fields are just copied from the
TicketQuery object to the Tick-
etQuote object. The queryId is a
unique ID that indicates the
request.

The fields in the TicketQuote
class are:
• query ID
• airline (SeemaAir, KarunaAir,

NitiAir, ApuAir)
• departure city
• departure date
• departure time
• arrival city
• arrival date
• arrival time
• no. of seats
• seat class (coach, business,

first class)
• smoking preference (smok-

ing/nonsmoking)
• total price

In case there is no availability
based on the search criteria, the
TicketQuote returns with a “0” in
the noOfSeats and the other fields
are invalid. This is not the most effi-
cient way of sending a response,
but it will serve our purpose.

TicketService
All four <protocol>TicketClient

classes inherit from the Ticket-
Service interface and hence pro-
vide implementations of the
getQuote() method. The function-
ality for all the clients is the

JULY 199948

Table 1:Ticket Reservation and Sales Broker classes

Figure 2: Workflows for the Broker

Figure 3: Ticket agent classes

Source Class Name Purpose
Listing 1 TicketBrokerServlet The Broker’s interface into the Merchant Server tier
Listing 2 TicketQuery Encapsulates a request for a ticket quote
Listing 3 TicketQuote Encapsulates a ticket quote from the airline
Listing 4 TicketService An interface implemented by the client stubs and server skeletons

of the middleware protocols used to interact with the Application
Services tier

Listing 5 TicketServiceManager Provides an implementation of the TicketService interface that
manages the four types of protocols (RMI, CORBA, Servlet an
socket) for the ticket service

Listing 6 SocketTicketClient Client for socket-based quote service offered by SeemaAir
Listing 7 RMITicketClient Client for RMI-based quote service offered by KarunaAir
Listing 8 CORBATicketClient Client for CORBA-based quote service offered by NitiAir
Listing 9 ServletTicketClient Client for Servlet-based quote service offered by ApuAir
Listing 10 TicketPricer Calculates the final price for the ticket based on current discounts

offered by the Broker

49JULY 1999

9 Net Avenue, Inc.
www.9netave.com

50 JULY 1999

same. They basically take in a
TicketQuery object and return a
TicketQuote object. They also
implement a bookSeats() method
that takes in a queryId parameter
for booking the flights. In our
implementations the server-side
counterparts for these classes
don’t perform any real-time func-
tion (actually checking for avail-
ability, etc.). The prices are
looked up in an MS Access data-
base and the seats are assumed
to be booked as soon as the
request is made.

My assumption is that the read-
er is familiar with the workings of
the different protocols used in
this application. Thus I won’t go
into details of the classes used
here. Each of the service proto-
cols (Socket/RMI/CORBA/Servlet)
has the following set of classes as
illustrated earlier in Figure 3:
• <protocol>TicketClient, e.g.,

RMITicketClient: This imple-
ments the TicketService inter-
face. The methods getQuote()
and booksSeats() in this class
throw a more specific excep-
tion (RemoteException) as
compared to the superclass
methods in the TicketService
interface.

• <protocol> TicketServer, e.g.,
RMITicketServer: This class
resides in the Application Ser-
vice Layer and also extends the
TicketService class. The RMI
TicketServer is described later
in this article.

In the interest of space and
general sanity, I won’t go into
details of the classes for all four
types of services. I will cover the
RMI example here. The under-
standing of the rest is left as an
exercise for readers.

In a real-world application the

responses from each “airline” could
take varying amounts of time.

There would also be a timeout
for waiting for the responses.
This kind of a transaction is asyn-
chronous and would be best han-
dled by spawning each ticket
quote service as a separate
thread. However, in our applica-
tion we’ll assume that the
responses are instantaneous
(indeed they will be, because our
Service Application Tier is pretty
much hard-coded). Therefore,
each of the clients that request a
quote from the corresponding
airline server is started sequen-
tially as shown in the TicketBro-
kerServlet class. The clients for
the different protocols are
described in the next four sec-
tions.

TicketClientManager
As the name suggests, this

class is responsible for managing
the TicketClients. The Ticket-
ClientManager constructor cre-
ates all four clients. Each client
does the actual connect (Sock-
ets) or bind (RMI/CORBA), or
establishes the URL connection
(servlets) and returns a reference
to the TicketClientManager.

The TicketClientManager con-
tains a getQuotes() method that
calls a getQuote() on each of the
clients. Each client in turn calls
the getQuotes() method on its
corresponding remote server.
The resultant value is a Tick-
etQuote object that is passed
back to the TicketBrokerServlet.
The TicketClientManager also
contains a bookSeats() method
that is forwarded in a similar
fashion to the corresponding pro-
tocol server. The bookSeats()
method returns a boolean value
that indicates the result of the

operation. The bookSeats()
method takes in a string parame-
ter that indicates the protocol
(and corresponding airline) that
was selected for the best fare.

RMITicketClient
This is the RMI client that gets

the ticket quote from an RMI-based
service. It implements the Ticket-
Service interface. This service is
the one used by KarunaAir. The
constructor establishes a connec-
tion with the RMITicketServer. The
getQuote() method calls the corre-
sponding getQuote() method on
the RMITicketServer handle. Simi-
larly, the bookSeats() method calls
the corresponding method on the
server.

TicketPricer
The purpose of the Ticket-

Pricer is to get the final price on a
quote. The implementation of
this class uses a random selec-
tion to give a discount on the
price. In a real-world application
the broker would add promo-
tions, discounts, and so forth
based on the ticket agent’s pric-
ing policies. The TicketPricer has
a single method, getDiscounted-
Price(), that returns a new price
for the tickets.

Application Service Tier
Classes

The Service Access Tier consists
of five classes. Four of them repre-
sent the different type of connec-
tion protocols – RMITicketServer,

CORBATicketServer, SocketTicket-
Server and ServletTicketServer.
Each of these classes looks up the
ticket prices from a static database
implemented in Microsoft Access.
This is achieved via the Quoter
class. These classes and their pur-
pose are listed in Table 2.

Each class inherits from the
TicketService interface. The
classes provide implementations
for the client-side stubs. Hence,
they provide implementations of
the getQuote() and bookSeats()
methods. The code in the ticket
server classes is trivial and is not
described here.

Quoter
The Quoter class establishes a

database connection with the
Microsoft Access table,
Quotes.mdb. It looks up the price
of each ticket based on the air-
line. The ticket prices are hard-
coded.

Running the Programs
The code for this article is

available at www.JavaDeveloper-
Journal.com. It was compiled and
tested on a Windows NT 4.0 work-
station. To run the programs you
will need the following: JDK 1.1.x,
JSDK 2.0 (Java Servlet Develop-
ment Kit), your servlet engine and
Web server, MS Access database
and Visigenic Visibroker 2.5+.
Instructions are also available at
the Web site.

FINDaHOST

www.findahost.com/hosts/jdj

Figure 4: Broker connections with the airlines

Ajit_Sagar@i2.com

Table 2: Application Service Tier classes

Source Class Name Purpose
Listing 11 SocketTicketServer This provides the quotation service for SeemaAir that uses raw sockets

as the mechanism to transfer the quote back to the Service Access Tier.
Listing 12 RMITicketServer This provides the quotation service for KarunaAir that uses RMI

as the protocol to transfer the quote back to the Service Access Tier.
Listing 13 CORBATicketServer This provides the quotation service for NitiAir that uses CORBA as

the protocol to transfer the quote back to the Service Access Tier.
Listing 14 ServletTicketServer This provides the quotation service for ApuAir that uses a servlet

as the mechanism to transfer the quote back to the Service Access Tier.
Listing 15 Quoter This provides a quote for the ticket request.

51JULY 1999

Sales Vision
www.salesvision.com

52 JULY 1999

KL G
www.klgr

53JULY 1999

roup
roup.com

54 JULY 1999

The assignment was enough to make any
neophyte Java developer bolt for the door: to
provide a remote method for use by an applet
that invokes a native method that wraps a
function in an existing legacy library. Mentally
calculating the odds of making it to the park-
ing lot, I discarded that option and indicated
my willingness to assume responsibility for
the task with an air of cautious confidence.
The purpose of the remote method is to return
an instance of a class object whose contents
reflect the data structure returned by the lega-
cy function. Little did I know what I was getting
myself into.

Perhaps the most significant hurdle I had
to overcome was the lack of useful documen-
tation to help direct my efforts. While
embroiled in implementation, I spent an entire
day poring through the RMI usergroup archive
on Sun’s Web site searching for guidance – to
no avail. I would’ve spent a lot of time wading
through their JNI usergroup archive as well,
but I couldn’t seem to locate one. Subsequent-
ly I made the decision to document my find-
ings so as to assist others.

Before we start on the class design, let’s
look at what the existing legacy code
(Get_Legacy_Data) does. An ASCII file is read
from the local disk, then its contents are
parsed into a Legacy_Type structure whose
address is passed as an argument by the caller
(see Listing 1). Not much to it, really. The lega-
cy code was compiled into a shared object
library, legacy.so, using the IRIX 6.2 compiler
and then loaded onto the Web server, a Silicon
Graphics Indy station loaded with the IRIX 6.4
operating system.

The first requirement for class design is a
class that acts as a template for the data struc-
ture that’s returned by the legacy function.
This class, JLegacy, declares a series of public
instance variables that correspond to the
members of Legacy_Type and provides a con-
structor that has no parameters (see Listing
2). This constructor is never called, not even
by the native method that allocates the object
for return to the remote method.

Next, the remote interface declaration for

the remote object must be defined. The remote
interface is a Java interface that extends
java.rmi.Remote, used exclusively to identify
remote objects. The remote method getJLega-
cy, which is defined by JLegacyIF, returns a JLe-
gacy instance and throws java.rmi.RemoteEx-
ception, which provides a mechanism to han-
dle any failures (see Listing 3).

Now that the remote interface has been
defined, let’s look at the design of the remote
object, JLegacyRO (see Listing 4). For JLegacy-
RO to implement getJLegacy, it must interface
with the existing legacy code through a native
method, getN. This method is declared in the
JLegacyRO class but implemented in C, just
like the legacy code. It returns a JLegacy
instance and is declared static since its imple-
mentation is the same for all instances of the
JLegacyRO class. It’s implemented in a
native shared-object library, libJ-
LEG.so, which is loaded into the
Java Virtual Machine at runtime
using a static initializer in
the JLegacyRO class. Stat-
ic initializers are executed
once by the JVM when
the class is first loaded. If
JLegacyRO doesn’t load
the native library, an UnsatisfiedLinkError
exception is thrown when getN is called. Fail-
ure to load libJLEG.so is established only by
catching one of the exceptions thrown by Sys-
tem.loadLibrary. The JVM qualifies the library
name, assigns the prefix lib and appends the
library extension .so for UNIX and .dll for
Microsoft Windows.

JLegacyRO calls getN and returns the JLe-
gacy object returned by it to implement the
method defined by JLegacyIF. Nothing to it,
right? Well, let’s finish the JLegacyRO class
before we call this one complete.

The JLegacyRO class exports itself by
extending UnicastRemoteObject and calling
the constructor of its superclass in its own
constructor. In addition, UnicastRemoteObject
redefines the equals, hashCode and toString
methods inherited from java.lang.Object for
remote objects.

The first thing the main method provided
by the JLegacyRO class does is install RMISe-
curityManager to protect its resources from
remote client stubs during transactions. The
RMISecurityManager is the equivalent of the
applet security manager for remote object
applications. Next, the main method creates
an instance of the JLegacyRO class and a
remote object registry listening on a port num-
ber, which is declared static final. The JLega-
cyRO class is the only application that will use
this registry. Finally, the main method binds
the instance of the JLegacyRO class to a
unique name in the remote object registry,
making the object available to clients on other
virtual machines. The name bound to the
object is formed using the port number and
the name of the remote object’s host, which is
passed to the application as a command line
argument and the String “JLegacyRO”.

Before delving into the details of the native
method, let’s look at the last class – the client-
side class that invokes the method on the
remote object, JLegacyC (see Listing 5). JLega-
cyC provides a constructor without parame-
ters, which is never intended to be called, and

a static method, get, which looks up the
remote object in the registry creat-

ed by JLegacyRO. This static
method also retrieves a refer-
ence to JLegacyIF through

which the remote method,
getJLegacy, is invoked.

The get method returns
the JLegacy object that was

returned by the remote method invocation.
These three classes and the interface are

all compiled into the same package. All class-
es, including the stub and skeleton created
from the JLegacyRO class using the rmic com-
piler, are served from the Indy Web server. The
environment settings are explained at the con-
clusion of this article. The native method is
also relatively straightforward.

Before we can discuss the details, however,
we must establish its C prototype. The C head-
er file, which defines the prototype for the
native method, is generated using the javah
tool with the -jni option on the compiled JLe-
gacyRO class (see Listing 6). Since the JLega-
cyRO class has been compiled into a package,
the package name must be appended to the
class name when javah is executed (e.g., javah
-jni my.jlegacy.classes.JLegacyRO). The result-
ing header file will be prefixed with the package
name (e.g., my_jlegacy_classes_JLegacyRO.h).

Interfacing with Legacy
Libraries Using Remote

Method Invocation
Getting there from here

JAVA FOR LEGACY SYSTEMS

by Scott Howard

55JULY 1999

If you’ve read the Java Native Interface
specification, you’re already familiar with the
method used by javah in composing native
method names. If you haven’t, I must warn you
it’s not pretty. A native method name has the
following signature: Java_<mangled fully quali-
fied class name>_<mangled method name>.
The term mangled is actually used in the JNI
specification. If the native method is an over-
loaded method, the name is further appended
with __<mangled argument signature>. There’s
that word again. For further information on
the JVM’s type signatures, I recommend read-
ing the JNI specification.

The JNI interface (or JNIEnv) pointer is
always the first argument to a native method.
The interface pointer points to a table of func-
tion pointers, each a JNI function. In standard C,
all JNI functions are called via this pointer (e.g.,
(env)->FindClass(env,“java/lang/String”)). The
JNIEnv structure is defined in C++ with inline
functions that ultimately resolve to the same
references as the standard C functions. Since
the sole purpose of the JNIEnv pointer is to
invoke the JNI functions, and because it has a
well-defined syntax, I wrapped all the JNI func-
tions so as to promote greater readability and
easy maintenance.

The second argument to a native method
varies depending on whether or not the
method is declared static. If the method is
nonstatic, the argument is type jobject and is a
pointer to the Java object that invoked the

method. If the method is declared static, the
argument is type jclass and is a pointer to the
Java class that declared the method (i.e., the
remote object class JLegacyRO). Any argu-
ments passed to the native method in its Java
declaration follow the second argument in the
function prototype. In this case the method is
declared with no arguments.

Remember about getN being declared as
returning an instance of the JLegacy class?

This is the jobject returned by the function in
the C prototype. Briefly, the native method will
retrieve the required data using the existing
legacy function, instantiate the jobject to be
returned and populate it with the retrieved
data (see Listing 7).

First the native method calls Get_Lega-
cy_Data, passing it a pointer to the
Legacy_Type structure to be populated. Then
the fun begins. Using the JNI AllocObject func-
tion, the native method allocates an object of

the JLegacy class. The jclass must be estab-
lished first, using the JNI FindClass function,
because the native method is declared static
in the JLegacyRO class. This means that the
jclass argument passed to it isn’t the class to
which an object is to be allocated. The Find-
Class function requires a fully qualified class
name (i.e., my/jlegacy/classes/JLegacy).

The JLegacy object is an example of a local
reference, meaning its scope is for the lifetime
of the native method and it’s automatically
freed by the JVM upon return. All objects
passed into or returned from native methods
are local references. Global references remain
visible until they’re freed.

Once the JLegacy object is returned, the
native method must establish the field IDs for
the public instance (nonstatic) variables within
the Java object in order to access the variables
or fields. Fields are identified by the JNI, using
their symbolic names and type signatures.

Finally, the instance fields are set to the
contents of the Legacy_Type structure
returned by Get_Legacy_Data using the JNI
Set<type>Field family of accessor routines,
and the populated JLegacy object is returned
to the interface implemented by JLegacyRO.
Former C programmers should note that the
Set<type>Field routines are provided only for
the following primitives: boolean, byte, char,
short, int, long, float and double; everything
else is an object of some sort.

In this case a series of the members in the

Slangsoft
www.slangsoft.com

“The purpose of the remote
method is to return an

instance of a class object
whose contents reflect the

data structure returned by
the legacy function”

Legacy_Type structure returned by Get_Lega-
cy_Data are char arrays or UTF-8 format in
Java. The UTF-8 format encodes nonnull ASCII
characters in the range 0x01 to 0x7F (hexadec-
imal) in a single byte. Characters above 0x7F
are encoded using up to 3 bytes of storage.
The JNI SetObjectField function requires a
native type for the value of the indicated field,
so the char arrays must be converted to
java.lang.String objects before their instance
fields can be set in the Java object. This trans-
lation may be performed using the JNI New-
StringUTF function. Since a series of these
instance fields have to be set, the steps need-
ed to do this are generalized into another func-
tion, JL_SetStringField.

If an error condition arises during execu-
tion of the native method, the method will
delete the local reference that the JLegacy
object pointed to and then return a null object
to the interface implemented by JLegacyRO.
Freeing the local reference is a habitual prac-
tice of mine when I write C code, though it’s
not required in Java; I just think it’s good pro-
gramming style.

Now let’s make everything talk to each
other. First let’s discuss compiling getN into
the native shared-object library, libJLEG.so. In
the makefile for libJLEG.so, legacy.so must be
supplied as an argument to the link editor in
order to resolve the symbol supplied by
Get_Legacy_Data’s object module for getN. In
addition, Java 3.1 (Sun 1.1.5) assumes the run-
time linker to load n32 libraries. If you attempt

to load an o32 native library from the JLegacy-
RO class, a fatal error will be returned by rld.
It can’t successfully map the shared object
name to the LD_LIBRARY_PATH despite the
presence of the native library located at a path
specified by the environment variable.

To facilitate loading an o32 library, two
options are available. The first is to set the
environment variable SGI_ABI to “-32” before
starting JLegacyRO. The second is to pass the
“-32” argument to the Java interpreter when
starting JLegacyRO. On the Indy Web server
the LD_LIBRARY_PATH variable must include
the path for libJLEG.so and legacy.so, as well as
<yourJAVA_HOMEpath>/lib/sgi/green_threads.

Apparently the JVM for the Silicon Graph-
ics platform uses the default Green threads
package as its user threading model. The
Green threads package maps all Java threads
into a single native thread, prohibiting concur-
rent execution of multiple threads in a Java
application. In addition, the CLASSPATH vari-
able on the Indy Web server must include the
path that precedes the directory structure,
defined by the package the classes were com-
piled in, so the Java interpreter can locate
them. Finally, the applet class is served from
the Indy Web server by setting the CODEBASE
attribute accordingly in the HTML file.

I hope this article answers more questions
than it raises. I know I learned a lot while work-
ing on this task and even more while writing
about it. I hope you did, too.

Although all of these classes were served

from a single Indy Web server, a summary
illustrating the client and server classes run-
ning on different platforms might be useful to
make clear on which platform each class
belongs and each command-line step takes
place (see Table 1). In this context client refers
to the process (i.e., applet) invoking a method
defined by a remote object and server refers
to the remote object process. The rmic com-
piler is used on the server platform to create
the stub and skeleton classes; the stub class is
copied to the client platform before runtime.
In addition, javah is used on the server plat-
form to generate the header file that defines
the C prototype for the native method
declared by the remote object class; develop-
ment of the source file that implements the C
function is left to the user. The make of the
native shared-object library on the server plat-
form isn’t illustrated, nor is browser startup
on the client platform.

About the Author
Scott Howard, a staff analyst for New Technology,
Inc., in Huntsville, Alabama, has developed software
for private industry and the aerospace community for
13 years using FORTRAN 77, C and now Java. He’s
also a contributor to the Enhanced Huntsville
Operations Support Center System Web
infrastructure and Java Common User Interface
designs at Marshall Space Flight Center. He can be
contacted at Scott.Howard@UMS.MSFC.NASA.GOV.

56 JULY 1999

UMS.MSFC.NASA.GOV

Server Client
>ls >ls
JLegacy.java JLegacy.java
JLegacyIF.java JLegacyC.java
JLegacyRO.java JLegacyIF.java

>javac JLegacy.java >javac JLegacy.java

>javac JLegacyIF.java >javac JLegacyC.java

>javac JLegacyRO.java >javac JLegacyIF.java

>ls >ls
JLegacy.class JLegacy.class
JLegacy.java JLegacy.java
JLegacyIF.class JLegacyC.class
JLegacyIF.java JLegacyC.java
JLegacyRO.class JLegacyIF.class
JLegacyRO.java JLegacyIF.java

>rmic JLegacyRO

Server Client
>ls
JLegacy.class
JLegacy.java
JLegacyIF.class
JLegacyIF.java
JLegacyRO.class
JLegacyRO.java
JLegacyRO_Skel.class
JLegacyRO_Stub.class

>javah -jni my.jlegacy.classes.JLegacyRO

>ls >ls
JLegacy.class JLegacy.class
JLegacy.java JLegacy.java
JLegacyIF.class JLegacyC.class
JLegacyIF.java JLegacyC.java
JLegacyRO.class JLegacyIF.class
JLegacyRO.java JLegacyIF.java
JLegacyRO_Skel.class JLegacyRO_Stub.class
JLegacyRO_Stub.class
my_jlegacy_classes_JLegacyRO.h

>java my.jlegacy.classes.JLegacyRO hostname &
JLegacyRO: creating registry
JLegacyRO: bound in registry

Table 1: Compilation steps on the client server platforms

57JULY 1999

Edith Roman
www.edithroman.com

58 JULY 1999

What Is RMI?
RMI, the acronym for Remote Method Invo-

cation, is part of the core Java API. The central
idea behind this technology is the ability to call
the methods of a remote object, shielding the
programmer from mundane Socket handling
while promoting a cleaner software architecture.

Why Use RMI?
RMI allows a developer to create distributed

applications while retaining 100% Java compat-
ibility and reducing the overall complexity of a
project. By using RMI, the programmer can get
an instance of the server object and call its
methods directly. By calling the server object’s
methods, we can avoid the use of large switch
statements and proprietary protocols.

Comparing RMI to Sockets
RMI is actually an abstraction layer built

over Sockets.
1. It uses Sockets to communicate data over

the network.
2. It allows for persistent/stateless connec-

tions.
3. It uses Serialization to transport objects

over streams.

Advantages of RMI
A primary advantage is simplicity and

clean implementation, leading to more main-
tainable, robust and flexible applications. This
isn’t to say a system can’t be written using
Sockets in place of RMI, just that RMI removes
a great deal of mundane tasks -- such as pars-
ing and switch logic. Since RMI has the poten-
tial to reduce a great deal of code, more com-
plex systems can be built with relative ease.
The greatest benefits don’t revolve around
ease of use, however.

RMI allows us to create a distributed system
while at the same time decoupling the
client/server objects. RMI isn’t the first API to
put these benefits on the table, but it’s a pure
Java solution for doing so. This means that it’s
possible to create a zero-install client for your
users. An example of this may be a Decision
Support System (DSS) written as an applet that
communicates with a “server interface” object
using RMI. This server interface object could be

designed to simply call methods from a server
object that talks to the database (see Figure 1).
By using such an architecture, you can build
some extremely powerful applications that are
easily maintained (relatively, of course!).

As you can see from Figure 1, a system can
use RMI to its advantage in several ways:
1. There’s no client installation needed, only a

Java 1.1-capable browser (or a JRE for appli-
cations).

2. If the DBMS is changed (i.e., if you move to
Oracle from Access), then only the server
object needs to be recompiled, while the
server interface and client remain the same.

3. All portions are easily distributed, and devel-
opment teams can be given a “section” of the
distributed architecture to work on. This
simplifies coding and allows a group to lever-
age its talents better. For example, the GUI
“expert” could focus on the client while the
DBMS “expert” could focus on the server.

Disadvantages of RMI
RMI is slightly less efficient than Sockets

because of the additional “layer” involved and
because it must deal with the registry in order
to communicate. Another concern is creating
multithreaded servers safely; a common mis-
take is to assume the default threading will
allow you to ignore code that ensures our serv-
er is thread-safe and robust. If you want to
implement a concurrent user system, you’ll
still need to provide the proper structure for
doing so.

How Does RMI Work?
RMI uses a registry to store information

regarding servers that have been bound to
it. This article uses the rmiregistry provid-
ed in the JDK; however, it’s possible to

write an RMI-based application without it.
Binding is done by calling the Naming.rebind()

method in the server object’s constructor (found
in the java.rmi package). If the method fails,
it’ll throw one of the following exceptions –
RemoteException, MalformedURLException
or UnknownHostException. In the case of
RemoteException, there was an error with the
registry, often occurring because rmiregistry
wasn’t executed before the server object
attempted to bind. Once the server has been
bound to the registry, a client can do a Nam-
ing.lookup() to get an instance of the RMI serv-
er object.

After the client has an instance of the serv-
er object, it’ll be able to call all the methods
defined in the server’s list of promised remote
methods. These methods are defined in an
interface that both the client and server
objects implement. By using rmic, we can cre-
ate a stub and skeleton to use for compiling
our client object.

The stub sits in the client’s codebase or
classpath (the client’s .class file usually resides
in the same directory). This stub object is what
tells the client what methods may be called
from the server and handles all the details that
allow us to call a remote object’s method via
the registry.

The skeleton is similiar to the stub, except it
must be in the server’s classpath (like the stub,
the skeleton usually resides in the same directo-
ry as the .class file for the server). The skeleton
handles incoming requests/parameters from
clients and returns the results via the registry.

Figure 2 should help you visualize this whole
process. It’s important to realize that while
we’re looking at a one-to-one relationship here,
anything is possible. You can have multiple
clients associated with a single server or multi-
ple servers, or even allow a client to be a server
as well. The only requirements are that the
stub/skeletons must be available to each object
that needs them (client/server) and that the reg-
istry must be located on the server’s machine
(or an alternative must be accounted for).

RMI: Pure Java
Distributed Computing

JAVA & DISTRIBUTED COMPUTING

by Christopher Lambert

A database that can be packaged with data and
application logic and distributed over the Net

Client (Applet)
No installation is
required and no
drivers are
needed

TCP/IP

Server
All DBMS-specific
code resides here
along with drivers

Server Interface
No DBMS-specific
code; just relay
requests to the
server in a DBMS-
independent way.

Figure 1: How a typical RMI application may look; notice that the client talks through the interface.

59JULY 1999

JDJ Store
www.jdjstore.com

60 JULY 1999

Putting It All Together
The following sections outline the steps

involved.
1. Writing the Interface
• Create an interface to be implemented by

the server class. This interface must con-
tain all public methods, each of which
includes a throws RemoteException clause
in its definition. This interface must also
extend the java.rmi.Remote object. For an
example, see Listing 1.

2. Writing the Server object (please refer to
Listing 2.)

• The server must extend UnicastRemoteOb-
ject.

• The server must implement the interface.
• To make the server object concrete so that

it may be instantiated, write the code and
complete each of the methods defined in
the interface.

• The security manager should be set, possi-
bly in the driver’s main() method or the
constructor. To do this, create a new secu-
rity manager object as an argument to the
system classes setSecurityManager
method, i.e.:

System.setSecurityManager (new
RMISecurityManager());

• Attempt a Naming.rebind() to bind the serv-
er to the registry in the driver’s main() or
the constructor. To use Naming.rebind(),
you must specify the server’s name and
pass through an instance to the server
object; for example, the main() approach,
i.e.:

MyServer myserver = new MyServer();
Naming.rebind (“myserver”, myserver);

3. Writing the Client object
• Call the Naming.lookup() method to get an

instance of the interface that the server
implements. This interface contains all the
promised methods (step 1). See Listing 3.

4. Getting things running
• Compile the server object and use rmic to

create the stub and skeleton .class files:
javac MyServer.java
rmic MyServer

• Compile the client object:
javac MyClient.java

• Run the RMI registry provided with the JDK:
rmiregistry

• Run your server object:
java MyServer

• Run your client object:
java MyClient

What Is Needed?
To access the RMI API, you must include

the necessary packages from “java.rmi.*” and
its child packages. You must also be using the
JDK 1.1.x and not JDK 1.2.x, as 1.2 requires
other considerations.

RMI with JDK 1.2.x vs JDK 1.1.x
Please note that, while in JDK 1.1.x, you

simply need to create a new instance of
RMISecurityManager to set your server with
the appropriate permissions. JDK1.2 is a little
different. Thankfully, the changes necessary
aren’t a big deal: simply write your own MySe-
curityManager class that inherits from Securi-
tyManager and implement the following
method (minimum):

public void checkPermission (Permission p)
{
return;

} //checkPermission

Be aware that this probably isn’t some-
thing you’d want to use for a corporate app;
however, for learning RMI with JDK 1.2.x it
works fine. Just so you know, what’s happen-
ing here is that the checkPermission()
method will throw a security exception if a
SecurityManager object doesn’t allow certain
requests. Otherwise, if the request is okay, it
returns (just as above). So the above method
allows everything – please read up on Java
security issues before doing corporate appli-
cations that may require (a little) more strin-
gent security!

An Example Program Using RMI
Now that we’ve discussed RMI and its appli-

cation, it’s time to write a small example appli-
cation to put RMI to the test. If you have any
problems compiling or running this demo, you
can e-mail me at chrislambert@pobox.com. I’m
using Sun’s JDK 1.1.6 to compile and run this
application, but if you comment/uncomment
where indicated, it will compile/run under JDK
1.2.x.

The example code will compile to create a
Server and Client, and should include the Serv-
er.java, Client.java and ServerInterface.java
source files. To compile and execute the exam-
ple code do the following:

javac Server.java //compile Server.java file
javac Client.java //compile Client.java file
rmic Server //create stub/skeleton
start/min rmiregistry

//start up the RMI registry
start java Server //start up the Server
javaClient server //start client and connect

to “server” (defaul registry
name //used by Server

Resources
To find out more on how to leverage the

RMI API, I’ve listed some URLs and book titles
to help you get started.
1. Java in a Nutshell – Examples. ISBN 1-56592-

371-5
2. Beginning Java. ISBN 1-861000-27-8
3. Java 1.1 Developers Handbook. ISBN 0-7821-

1919-0
4. http://adams.patriot.net/~tvalesky/easy-

rmi.html
5. www.nada.kth.se/javadoc/JDK1.1/guide/rmi/

index.html
6. www.javasoft.com/products/jdk/rmi/

index.html

Conclusion
This article presents a quick and easy way

to get started using RMI by example. I recom-
mend that you refer to the URLs above for
more information or consider the books list-
ed. Enjoy using RMI and the best of luck in
your programming endeavors!

About the Author
Christopher Lambert, a graduate of Lambton College
with a computer programmer analyst degree, is
currently completing a BS in computer science at
the University of Northern British Columbia. He
works at Canfor, a software consulting company
pecializing in Java/Oracle. He can be reached
at chrislambert@pobox.com.

chrislambert@pobox.com

Client Stub Registry Skeleton ServerTCP/IP

Figure 2: The relationship between each of the components in RMI

The complete code listing for
this article can be located at

www.JavaDevelopersJournal.com

▼▼▼▼▼▼ CODE LISTING ▼▼▼▼▼▼

61JULY 1999

Java
Bootcamp

www.javabootcamp.com

L ast month we discussed the use of
Swing’s Document model to create a syn-
tax-highlighting Document model that

we could just plug into JTextPane and use.
This month we’ll continue with that and add
complete support for comments, strings and
numbers. We’ll also cover how easy it is to
actually use the model we’ve developed, and
test things out as we go along.

To start things out let’s try and use what
we have so far. If we look at the code below
we can see that plugging the Document
we’ve created into a JTextPane component is
quite easy. Defining the keywords is also
very easy.

JTextPane editor = new JTextPane();
CodeDocument doc = new CodeDocument();
Vector keywords = new Vector();
keywords.addElement("abstract");
keywords.addElement("boolean");
...
doc.setKeywords(keywords);

editor.setDocument(doc);

We could have just created the CodeDocu-
ment on the fly and passed it in as an argu-
ment to the constructor of the JTextPane
class, but then the keywords for the Docu-
ment wouldn’t have been set and we’d have
had to retrieve the Document and then add
them.

By running the code above and typing in
some text, we get the window in Figure 1 to
come up.

A word of caution: If you use this and the
first word you type in is in your keywords list,
you’ll get an exception. This is a known bug
on the Swing Web site (for more information
look at http://developer.java.sun.com/devel-
oper/bugParade/bugs/4128967.html) with no
known workaround. You may also notice that
when you type for a while and then move the
cursor back to a previous position and start
typing again, the JTextPane doesn’t quite
repaint itself correctly. This is also a known

bug of the JTextPane (for more information
see http://developer.java.sun.com/developer/
bugParade/bugs/4127974.html). This has
been fixed in Swing version 1.1.

Now you can test the modifications we’ll
be making to the CodeDocument class.

Changing the insertString Method
Some of you may have noticed that the

Document Model code we developed in
the previous article worked only if you
actually typed in the text manually. If we
had called the insertString method and
passed in a string with a length longer
than one character, the syntax highlight-
ing wouldn’t have worked. To fix that we’ll
make a simple change, moving the code
that actually did the comparing to another
method, and changing the insertString
method to support any size string. We’ll
create a method called processChar that
will actually do the work of checking the
kind of character we’re dealing with and,
in turn, call the correct method to handle
that character. To make the whole thing
work, we can then just loop through each
of the characters in the string that’s
passed into the insertString method,
starting at the offset position (the offs
variable passed into the insertString
method) and ending at the offset plus the
length of the string passed in. For each
character we find we can call the process-
Char method, and voila! We can now han-
dle any size string. To get an idea of the
code, take a look below.

public void insertString(int offs,
String str,
AttributeSet a)

throws BadLocationException{
super.insertString(offs, str, normal);

int strLen = str.length();
int endpos = offs + strLen;
int strpos;

for (int i=offs;i<endpos;i++){
currentPos = i;
strpos = i - offs;
processChar(str.charAt(strpos));

}
currentPos = offs;

}

The only problem with the solution above
is that when reading large chunks of text you
may notice a slowdown in JTextPane’s perfor-
mance while it loads and parses all the text. A
possible solution would be to use a thread to
handle any text not immediately visible to the
user, parse it in the background and
then…well, that’ll be the subject of a future
article!

Adding String Support
Now that we can support entered text of

any size, let’s add highlighting support for
strings. Adding string support isn’t too hard
now that we have the basic pieces in place.
We’ll add a variable that we’ll use to keep
track of whether we’re entering a string. If
this flag is turned on, any text we enter fol-
lowing the double quote (“”) will be colored
in a different foreground color. Also, if this
flag is turned on, no keyword processing
will occur. A carriage return will automati-
cally shut the flag off. We’ll need to keep
track of the start position where the flag
was first turned on. This will allow us to
type in some text representing a string, hit
the carriage return and type other stuff, and
then put the caret back on the line where
the string was and resume entering the
string text – all the while keeping the for-
mats correct. We’ll also need a variable that
represents the style attribute we want for
strings.

In addition to variables we’ll need some
new methods. For strings we’ll create a
checkForString() method that will determine
whether we’re inside a string. If it finds that
we are, the mode variable will be set appro-
priately (this will be explained in more detail
a few paragraphs down). We’ll also need a
method called insertTextString() that will

Adding more advance features, including highlighting
for strings, comments and numbers

by Jim Crafton

M O R E O N

Syntax Highlighting

62 JULY 1999

63JULY 1999

NSI COM, Ltd.
www.nsi.com

Visualize
www.visualizeinc.com

Develop-
Mentor

www.develop.com

64 JULY 1999

actually reinsert the properly formatted
string.

Adding Number Support
Adding support for numbers is similar to

adding support for strings. We’ll add a vari-
able to hold the style attribute for numbers,
and also add two more methods: checkFor-
Number() and insertNumberString(). Like
strings, the checkForNumber() method deter-
mines whether we’re actually entering valid
digits. If we are, it sets the CodeDocument’s
mode accordingly. Like insertTextString,
insertNumberString inserts the properly for-
matted text as a number.

Adding Comment Support
Comments are handled in a similar man-

ner. Two new methods are needed, checkFor-
Comment() and insertCommentString(). Like
numbers and text, the checkForComments
method determines if a comment block has
been started (it checks for the “/*” combina-
tion to start a comment and the “*/” to end a
comment block). If it has, it changes the
attributes of the entered text by calling the
insertCommentString() method. Again, like
numbers and strings, the insertCom-
mentString() changes the formatting attri-
butes of the string accordingly, and then
inserts into the document. Another private
variable is needed to hold the formatting
attributes for comments.

Putting It All Together
Now it’s time to get down and dirty. We’re

finally going to look at the whole process, first
in general terms and then in more detail using
code examples. As we mentioned earlier, the
original insertString method of the CodeDocu-
ment class was changed, and much of the
logic was moved to a new method called
processChar(), thus allowing us to handle not
only single keystrokes, but also to program-
matically insert multiple character strings.
ProcessChar() works by making certain
assumptions about what characters will fol-
low other characters. Based on this, it sets the
insert mode for the current position of incom-
ing text. Based on this mode (which is simply
a private integer variable), it can then deter-
mine which insertXXXString() method to call.
For example, when it encounters the charac-
ter ‘9’, it figures there’s a very good chance
that this is the start of a number or that a
number is currently in the process of being
entered. To verify this it calls the checkFor-
Number() method. If checkForNumber()
determines that we’re still entering a number,
it sets the mode to the number entry mode. If
it discovers any other character present, how-
ever, such as a space, a parenthesis or a letter,
it sets the mode to the default text entry mode
(the number entry mode is represented by

the static constant NUMBER_MODE, while the
text entry mode is represented by the static
constant TEXT_MODE). The other check-
ForXXX() methods work in a similar fashion.
After the checkForXXX() method has
returned, the mode will have been set cor-
rectly and, based on this, the proper
insertXXXString() method can be called. If the
mode is in TEXT_MODE, the formatting is left
alone.

Now look at the code in Listing 1 for
method processChar. The first thing the
method does is to check if we’re in COM-
MENT_MODE. Because comments can include
anything (aside from the comment-terminat-
ing characters), we’ll let the mode default to
COMMENT_MODE; otherwise we’ll change it
to default to TEXT_MODE, which is the stan-
dard text entry mode (no formatting). Next, a
switch statement is created based on the
character passed to the processChar method.
As mentioned before, the method works on
the assumption that the character being
entered belongs to one of five groups (generic
text, keywords, strings, numbers or com-
ments), and that the case statements are
grouped accordingly. Characters equaling the
numbers ‘1’ through ‘9’ cause a check for
numbers; characters equaling ‘*’ or ‘/’ suggest
the possible start or end of a comment block,
and a check is made; and so on. Once the
switch statement is finished executing, a final
check is made for quoted strings if we’re still
in TEXT_MODE. Finally, depending on which
mode we’re in, a call is made to the appropri-
ate insertXXXString method.

There are four check methods: checkFor-
Comment(), checkForKeyword(), checkFor-
Number() and checkForString(). While there
are some differences from the original check-
ForKeywords() method, the basic idea, as dis-
cussed last month, is the same. We retrieve
the current element, get the text from it, find
our position in the element and then, starting
at the end, we walk backward until a delimiter
of some sort is found and then set the mode
accordingly. Let’s look at some of the check-
ForString() method’s code to examine this
more closely. We’ll assume we already have
the correct offset from the Document’s ele-
ment.

..
..
int quoteCount = 0;

if ((offs >= 0) && (offs <= strLen-1)){
i = offs;
while (i >0){
//the while loop walks back until we hit a

delimiter

char charAt = elementText.charAt(i);
if ((charAt == '"')){
quoteCount ++;

}
i--;

}
int rem = quoteCount % 2;

mode = (rem == 0) ? TEXT_MODE:
STRING_MODE;

}

The code is fairly simple: we loop back-
ward until we run out of characters to
process, each time comparing a character
from the element text. If the character is a
double quote (“ ”), we add one to the local
variable called quoteCount. Once we’re
done with the loop, we check the remainder
of the quoteCount divided by two and
assign the results to another local variable
called rem. Why do this? Again, this is
another assumption about the way words
are put together. Since quotes always come
in pairs, if our remainder isn’t equal to
zero, we know we’re “inside” a string quo-
tation. Otherwise we can safely assume
that we’re “outside” and are just entering
normal text.

And Finally…
I think at this point I’ve probably run out of

column space. We now have a syntax-high-
lighting Document class that supports any
user-defined set keywords, plus string, num-
ber and comment highlighting (see Listings 2
and 3). We’ve also seen how easy it is to incor-
porate our Document class into the JTextPane
control to test our results as we go along. In
the next article we’ll add some more user-
definable properties so you can change the
color of highlighted string, comments, key-
words and so on. We’ll also look at adding
support for a kind of “smart editor” à la Bor-
land’s Code Insight features in their IDE edi-
tors.

References
1. Topley, K. (1998). Core Java Foundation

Classes. Prentice Hall PTR. Prentice-Hall
Inc.

2. Eckstein, R., Loy, R, and Wood, D. (1998)
Java Swing. O’Reilly and Associates Inc.

About the Author
Jim Crafton is a staff consultant with Computer
Sciences Corporation where he specializes in object-
oriented development. He also develops advanced
graphics software for Windows and the BeOS. He
can be reached at ddiego@one.net and has a Web
site at www.one.net/~ddiego/.

ddiego@one.net

Figure 1

65JULY 1999

Mecklermedia
www.mecklermedia.com

66 JULY 1999

Instantiations
www.instantiations.com

private void processChar(String str){
char strChar = str.charAt(0);
if (mode != this.COMMENT_MODE){

mode = TEXT_MODE;
}

switch (strChar){
case ('{'):case ('}'):case

(' '): case('\n'):
case ('('):case (')'):case

(';'):case ('.'):{
checkForKeyword();
if (mode == STRING_MODE &&

strChar == '\n'){
mode = TEXT_MODE;

}
}
break;
case ('"'):{

insertTextString(str, cur-
rentPos);

this.checkForString();
}
break;
case ('0'):case ('1'):case

('2'):case ('3'):case ('4'):
case ('5'):case ('6'):case

('7'):case ('8'):case ('9'):{
checkForNumber();

}
break;

case ('*'):case ('/'):{
checkForComment();

}
break;

}
if (mode == this.TEXT_MODE){

this.checkForString();
}
if (mode == this.STRING_MODE){

insertTextString(str, this.cur-
rentPos);

}
else if (mode ==

this.NUMBER_MODE){
insertNumberString(str,

this.currentPos);
}
else if (mode ==

this.COMMENT_MODE){
insertCommentString(str,

this.currentPos);
}

}

LISTING1

The complete code listing for
this article can be located at

www.JavaDevelopersJournal.com

▼▼▼▼ CODE LISTING ▼▼▼▼

Subscribe Today
and receive the

“CFDJ Digital Edition”
FREE

Subscribe Today
and receive the

“CFDJ Digital Edition”
FREE
at www.COLDFUSIONJOURNAL.com

1800-513-7111
or subscribe online for faster service
subscribe@sys-con.comG

E
T

Y
O

U
R

 O
W

N
!

FOCUS

SYS-CON
PUBLICATIONS

XML Tutorial
by author pg.20

XML Tips
by author pg.26

XML FAQs from
Our Panel
of Authors

pg.38

XML News
by author pg.79

Javatizing XML
by author pg.57

XML Standards
by author pg.66

WDDX: Allaire’s ColdFusion Connection Jeremy Allaire
ColdFusion 4.0 and WDDX 10

XML: Does it Take Data Formatting Where
No EDI Has Gone Before? Kang Lu
Makibng Your XML Code Readable and Understandable 18

XML and Java: The How and the Why Isreal Hilero
Integrating Java and XML on the Web 35

Displaying XML: Lessons Learnt Tom McGraw
Making Formatting and Displaying XML a non--issue 40

BizTalk: Microsoft’s XML Server Ajit Sagar
Powerhouse Makes a Name in XML 52

Product Review
ODI: Excelon author?
Excelon’s Answer to Creating and Maintaining XML 70

Product Review
IBM xml4j Parser author?
IBM’s Answer to Parsing XML 84

Book Review
XML Applications: WROX Press Ajit Sagar
Learning XML Made Easy 95

From the Editor
Welcome to XML
by author pg.15

XML and Java: How and Why
TM

Don’t miss our
September ’99 XML Issue!

Call 1 800-513-7111
to subscribe

▲
▲

▲
▲

▲
▲

▲
▲

▲
▲

▲
▲

▲
▲

▲
▲

▲
▲

▲
▲

▲
▲

▲
▲

▲
▲

▲
▲

▲
▲

▲
▲

▲
▲

▲
▲

▲
▲

▲
▲

▲
▲

▲ ▲

▲ ▲

▲▲▲▲▲▲▲▲▲▲▲▲

FO US

WDDX: Allaire's Cold Fusion Connection by Jeremy Allaire
XML: Does it Take Data Formatting Where No EDI
Has Gone Before? by Kang Lu
XML and Java: The How and the Why by Israel Hilerio
Displaying XML: Lessons Learnt by Tom McGraw
BizTalk: Microsoft's XML Server by Ajit Sagar
Welcome to XMLJ by author
XML Tips • XML Tutorial • XML FAQs from Our Panel of Authors
Javatizing XML • XML Standards • XMLNews
Product Reviews
ODI: Excelon
IBM xml4j parser
Book Reviews
XML Applications: WROX Press by Ajit Sagar
XML By Example: Sean McGarth, Prentice Hall by author

From the Editor
The XML Mambo
by Sean Rhody pg.5

CAREER EXPO at GIANTS STADIUM
STADIUM CLUB
East Rutherford, NJ
WEDNESDAY, SEPTEMBER 15, 1999 9:00 AM–6:00 PM

OVER 5,000 HOT TECHNOLOGY JOBS UNDER ONE ROOF!
FOR IT PROFESSIONALS ONLY (résumé required)
18 YEARS OLD AND OVER - FREE ADMISSION/FREE PARKING

EXHIBITOR INFO:
212 460-8705 • 888 634-EXPO (3976) • showmgr@tristatejobs.com

Presents Our NEWEST Integrated Employment Service:

The Biggest and the BEST face to face way to locate Information technology careers and professionals in the Tri-State Area

www.tristatejobs.com/it-career-expo

SPONSORED BY:

TRI-STATETRI-STATE
“Where the work force

and work unite!”

The Tri-State Area’s Leading IT
Employment Website JOBSJOBS

68 JULY 1999

Java is the fastest-growing programming lan-
guage today. The main reason this object-orient-
ed language is so popular is that it’s simple, easy
to learn and portable.

Java has several core APIs, one of which is
the JDBC API. JDBC is based on the X/Open SQL
Call Level Interface (CLI) – the basis of ODBC.
JDBC gives Java developers a common API to
access most databases. This includes relational
databases such as Oracle, DB2 UDB, Sybase and
Informix as well as legacy databases like IMS.
JDBC is used mainly to create n-tier client/serv-
er database applications or Web-enabled data-
base applications.

The JDBC API allows developers to easily
write applications that access data from a data-
base. JDBC API users aren’t required to under-
stand low-level database-related functions like
memory management and byte alignment. Not
only is JDBC easy to use, it also gives program-
mers a powerful set of APIs they can use to quick-
ly build sophisticated and real-world applications.

As the first in a multipart series focusing on
the enterprise features of JDBC 2.0, this article
explores several key features introduced in
JDBC 2.0.

JDBC 1.0
Sun announced JDBC 1.0 in February of 1996.

Since then, database vendors and independent
software vendors (ISVs) have implemented
JDBC drivers that conform to its specifications.
If you needed to access data from an IBM DB2
UDB or Oracle database, you had to use the
database vendor-supplied JDBC driver or a
third-party driver like INTERSOLV’s DataDirect
SequeLink Java Edition.

As the number of Java database applications
grew, application developers found the features
available in JDBC 1.0 inadequate. To implement
the desired database functions, application
developers had to write a lot of code. For exam-
ple, JDBC 1.0 supports retrieving records only in
the forward direction. To develop an application
allowing end users to scroll database records in
both directions, the developer, using a JDBC dri-
ver, had to cache all the records as they were
retrieved from the database locally on the client
side. The application quickly became even more

complex if it had to support modification of
these records. Developing and maintaining
these features, which should have been sup-
ported by JDBC 1.0, resulted in an unnecessary
burden on application developers.

To make up for the deficiencies in JDBC,
development tool and JavaBean vendors devel-
oped commercial products to support these
features. Examples include IBM VisualAge for
Java’s Data Access Beans and Specialized Soft-
ware’s ROAD:BeanBox.

JDBC 2.0
With the introduction of the JDBC 2.0 API

and its rich set of new features, developers can
now concentrate on the overall development of
applications, e.g., implementing business logic
rather than writing nonbusiness-specific data-
base functionality. Some of the new features
include support for bidirectional result sets,
batch updates, connection pools and connec-
tionless result sets.

JDBC 2.0 is fully compatible with JDBC 1.0.
Applications developed using JDBC 1.0 are
upwardly compatible and don’t require any pro-
gramming changes. All interfaces and classes
found in JDBC 1.0 are present in JDBC 2.0.

The JDBC 2.0 API consists of two main com-
ponents from Sun: the Core API and the Stan-
dard Extension. The Core API can be found in
the java.sql package and the Standard Extension
API in the javax.sql package.

Release 2.0 for the JDBC Core API has many
new features, including:
• Scrollable result sets
• Result sets that can be updated
• Batch updates
• SQL3 data-type support (SQL types ARRAY,

BLOB, CLOB, DISTINCT, STRUCT and REF)
• Custom mapping of SQL3 user-defined types

to Java classes
• Storing of Java objects in an object-relational

database

The JDBC 2.0 Standard Extension introduces
a wide variety of new features that address the
needs of enterprise application developers.
Using this API you can:
• Locate and maintain database connections

using Java Naming and Directory Interface
(JNDI) and DataSource objects.

• Use connection pooling to pool and share a
set of database connections between a larg-
er set of end users.

• Implement distributed transactional applica-
tions.

Overview of New Features in
JDBC 2.0
Result Set Enhancements

JDBC 1.0 API provided result sets that
scrolled only in a forward direction. Once a
result set was created, users could only access
information one record at a time. With the intro-
duction of scrollable result sets in JDBC 2.0, you
can now create applications that let you scroll
both forward and backward through the con-
tents of a result set. In addition, scrollable result
sets allow for relative and absolute positioning.
For example, it’s now possible to move directly
to the tenth row in a scrollable result set, or to
the fifth row following the current row. These
result sets can be updated as well.

Result Set Types
The JDBC 2.0 API supports three result set

types: forward-only, scroll-insensitive and scroll-
sensitive. They all support scrolling in one form
or another, but differ in their ability to display
changes while they are open.

A forward-only result set allows you to move
“forward” in the rows returned. This can be one
of the lightest-weight cursors you can build.
Depending on the JDBC driver’s implementa-
tion, a forward-only result set may take up the
least amount of client-side resources and could
dramatically improve the performance. For-
ward-only result sets are best suited for Web-
enabled database applications where users are
using a Web browser to query data.

A scroll-insensitive result set is generally not
sensitive to changes made while it’s open. When
you create such a result set, you get a snapshot
of the underlying data. The rows, order and col-
umn values are fixed when the result set is cre-
ated. A scroll-insensitive result set is not your
best choice for data that’s constantly changing.
However, this choice makes a lot of sense when
you’re accessing data from tables that contain
values not likely to change.

A scroll-sensitive result set is sensitive to
changes made while it’s open and provides a
dynamic view of the underlying data. For exam-
ple, if you’re viewing data from a table using a
scroll-sensitive result set and somebody else

A look at the key features of version 2.0
by Prasad Thammineni & Vasu Ramachandriah

Enterprise Database
Access with JDBC 2.0

ENTERPRISE JAVA

69JULY 1999

FINDaHOST
www.findahost.com

Wall
Street
Wise

www.wallstreetwise.com/jspell.html

Training
Etc, Inc.

www.trainingetc.com

70 JULY 1999

makes changes in the underlying values, the
changes are made visible to you. Driver vendors
typically implement this feature by constantly
reexecuting the query used to generate the
result set. Because of this repetitive activity,
dynamic cursors are expensive to implement
and are comparatively slow. This type of result
set is best suited for applications that need to
display the latest data.

Concurrency Types
A result set can have one of two different

concurrency types: read-only or updatable. A
result set that uses read-only concurrency does-
n’t allow updates of its contents, and, since
locks aren’t placed on read-only database
records, the overall concurrency of transactions
is increased. A result set that’s updatable allows
updates and may use write-locks to mediate
access to the same data item by different trans-
actions. Since only one write-lock can be held on
a database item, this can reduce concurrency.
Alternatively, you could use optimistic concur-
rency control if you think conflicting access to
the data will be rare.

Tuning Data Access Performance
You can improve the performance of your

application by indicating to the JDBC driver how
you intend to use the data being accessed. One
way to tune data access is to use the FetchSize
property of the statement. This allows you to
specify the number of rows to be fetched from
the database each time more rows are request-
ed. Instead of making a round-trip for a single
row, the driver fetches FetchSize rows and works
on these rows in memory. The moment your
code steps outside this subset of rows, the dri-
ver makes a trip to the database to fetch a new
set of FetchSize rows. You can improve the
responsiveness of the query being executed by
fine-tuning this property depending on your
application needs. You should also remember
that if you specify a large value for FetchSize
property, data on the client could get stale very
quickly. You can further fine-tune the perfor-
mance of a JDBC driver by specifying the direc-
tion for processing the rows – forward, reverse
or unknown. By setting these properties you can
dramatically improve the performance of your
applications. These two hints are just sugges-
tions, and the driver can choose to ignore them.

Creating a Result Set
The following code example creates a scrol-

lable result set that’s sensitive to updates. The
FetchSize property has been set to 50, meaning
50 rows of data will be fetched at a time. Note
that we have specified the result set will be
updatable by setting the concurrency type to
CONCUR_UPDATABLE.

Connection con = DriverManager.getConnection
("jdbc:subprotocol: sampleDB");

PreparedStatement pstmt = con.prepareState-
ment ("SELECT * FROM DEPT",
Resultset.TYPE_SCROLL_SENSITIVE,

Resultset.CONCUR_UPDATABLE);
pstmt.setFetchSize(50);

Resultset rs = pstmt.executeQuery();

In some instances the actual result set
returned might not be the one you wanted. For
example, if the query contains a table join and
the result set isn’t updatable, the JDBC driver
may not produce an updatable result set. When
this occurs, the driver issues a SQLWarning. You
can determine the actual result set type and
concurrency type of a result set by calling result
set’s getType() and getConcurrency() methods,
respectively.

Updating a Result Set
A result set is updatable if its concurrency

type is set to CONCUR_UPDATABLE. You can
update, insert or delete rows of an updatable
result set. The example below updates the first

row of a result set. The result set’s updateXXX()
methods are used to modify the value of an indi-
vidual column in the current row. Calling these
methods doesn’t update the underlying data-
base. The database is updated only when the
updateRow() method is called. Names or num-
bers can be used to specify columns.

rs.first();

rs.updateString(1, "Hello World");
rs.updateFloat("distance", 100000.0f);

rs.updateRow();

If you move to another row after modifying
individual columns but before you call
updateRow(), the changes are discarded. You
can explicitly cancel the changes made to indi-
vidual columns of a row by calling the Result-
set.cancelRowUpdates() method. This method
should be called after calling the updateXXX()

methods and before calling updateRow(); other-
wise it has no effect.

The following example deletes the tenth row
in the result set from the database.

rs.absolute(10);
rs.deleteRow();

JDBC 2.0 introduced the concept of an insert
row. The example below shows how to insert a
new row into a result set.

rs.moveToInsertRow();
rs.updateString(1, "Insert example");
rs.updateFloat("distance", 100.10f);
rs.insertRow();
rs.first();

An insert row is associated with a result set
and is used as a staging area before it’s inserted
into the result set itself. To position the result
set’s cursor on the insert row, you must call the
result set’s moveToInsertRow() method. Use
the result set’s updateXXX() and getXXX() meth-
ods to update and retrieve individual columns
of the insert row. Immediately after moving to
the insert row, using the moveToInsertRow()
method, the contents of the insert row are unde-
fined. Calling the getXXX() method on a column
in the insert row immediately after calling the
moveToInsertRow() would return an undefined
value until the value is set by calling up-
dateXXX() method.

Calling updateXXX() methods on an insert
row doesn’t affect the underlying database or
the result set. For the changes to affect the
underlying database, the insertRow() method
should be called. When inserting a row, columns
must allow null values. For example, if the col-
umn in the result set hasn’t been assigned a
value, or if a column in the result set being
inserted isn’t present in the underlying table
and the columns don’t accept null values, the
insertRow() method will throw a SQLException.

Though different database implementations
can produce either updatable or read-only
result sets for the same SQL query, you can gen-
erally expect queries that meet the following cri-
teria to produce an updatable result set:
• The query references only a single table in

the database.
• The query does not contain any join opera-

tions.
• The query selects the primary key of the

table it references.

In addition, a SQL query should also satisfy
the conditions listed below if inserts are to be
performed:
• The query selects all of the nonnullable

columns in the underlying table.
• The query selects all columns that don’t

have a default value.

Moving Around a Result Set
Earlier we said that result sets in JDBC 2.0

support both forward and backward scrolling
as well as relative and absolute positioning. In

“With the introduction

of the JDBC 2.0 API

and its rich set of

new features,

developers can now

concentrate on the

overall development

of applications”

71JULY 1999

this section we’ll discuss these features in
more detail.

A JDBC 2.0 result set maintains an internal
pointer called a cursor that indicates the row in
the result set currently being accessed. A result
set cursor is analogous to the cursor on a com-
puter screen that indicates the current cursor
position. The cursor maintained by a forward-
only result set can only move forward through
the contents of the result set.

In the JDBC 1.0 API, the only way to move the
cursor was to call the method next(). This is still
the appropriate mechanism to use in JDBC 2.0
when accessing rows in the forward direction.
JDBC 2.0 also provides additional ways to move
the cursor. The new method previous() moves
the cursor in the backward direction, one row at
a time, toward the beginning of the result set.
Both the next() and previous() methods return
false when you scroll beyond the last row or
above the first row. The following code example
loops through all the rows of a result set from
first to last, and once it scrolls beyond the last
row it loops in the reverse direction until it
scrolls before the first row.

Statement stmt = con.createStatement(Result
set.TYPE_SCROLL_SENSITIVE, Resultset.CON
CUR_UPDATABLE);

Resultset rs = stmt.executeQuery("SELECT
FIRSTNAME, LASTNAME FROM EMPLOYEES");

// print first name and last name from first

// to last order
while(rs.next()){
String fname = rs.getString("FIRSTNAME");
String lname = rs.getString("LASTNAME");
System.out.println(fname + " " + lname);
}

// print first name and last name in the
// opposite order

while (rs.previous()) {
String fname = rs.getString("FIRSTNAME");
String lname = rs.getString("LASTNAME");
System.out.println(fname + " " + lname);
}

Using the methods first(), last(), before-
First() and afterLast(), you can move the cursor
to the row indicated in their names. The method
absolute() will move the cursor to the row num-
ber indicated in the argument passed to it. If the
number is positive, the cursor moves to the
given row number from the beginning. If it’s neg-
ative, the cursor moves to the given row num-
ber from the end. For example, absolute(1) puts
the cursor on the first row and absolute(-1) puts
the cursor on the last row.

Along with the next() and previous() meth-
ods, the reverse() method moves the cursor
with respect to the current position. With the
relative() method you can specify the number of
rows you want to move the cursor from the cur-
rent position. As in the absolute() method, spec-

ifying a positive number will move the cursor
forward the given number of rows; specifying a
negative number will move it backward a given
number of rows. In the following example the
cursor moves to the fifth row, then to the sec-
ond row and finally to the fourth row.

rs.absolute(5); //cursor on the fifth row
rs.relative(-3); //cursor on the second row
rs.relative(2); //cursor on the fourth row

Other methods are available. For example,
getRow(), isFirst() and isLast() can help you
position and control the cursor better.

In the next article we’ll continue to explore
this API and the new features of JDBC 2.0. Mean-
while, for more information you can refer to the
JDBC specification document available at Sun’s
Web site.

About the Authors
Prasad Thammineni is vice president of Java
development at Specialized Software, a Java and
e-business consulting firm. He can be reached at
prasad@specializedsoftware.com.

Vasu Ramachandriah is a Java architect at
Specialized Software with more than three years
of Java experience. He can be reached at
vasu@specializedsoftware.com.

Prasad@ and Vasu@specializedsoftware.com

Slangsoft
www.slangsoft.com

TM

Ja
va

Buye
rsG

uide.c
om

Ja
va

Buye
rsG

uide.c
om

JAVA
BUYER’S

GUIDEBUYER’S

GUIDE

• Applica
tion

Serv
ers

• Books

• Class L
ibraries

• Code P
res

entation (N
EW

)

• Components (
NEW

)

• Consultin
g Serv

ice
 (N

E

• Database
Tools

• Deve
lopment To

ols

• Ed
ucation and T

• Hardware
Prod

• DES

• Modelin
g T

• Netw
or

• Other

• Profi

• Re

• S

JAVAS
P

E
C

IA
L

 I
S

S
U

E

presents

the most complete reference to
Java products and services

the Annual Print Edition of

Attention
Java vendors!
update your listings at

JavaBuyersGuide.com
for our next print edition.

EX
C
LU

SI

VE
EXCLUSIV

E

FREE

CD!
FREE
COLLECTORS

CD!
BONUS

• Application Servers
• Books
• Class Libraries
• Code Protection (NEW)
• Components (NEW)
• Consulting Services (NEW)
• Database Tools
• Development Tools
• Education and Training
• Hardware Products (NEW)
• IDES
• Modeling Tools
• Network Tools (NEW)
• Other Java Tools (NEW)
• Profilers (NEW)
• Reporting Tools (NEW)
• Sites (NEW)
• Team Development Tools (NEW)
• Testing Tools
• Web Tools

BUYER’S
GUIDEJAVABUYER’S
GUIDEJAVA

▲
▲

▲
▲

▲▲▲▲▲▲▲
▲

▲
▲

▲
▲

▲
▲

▲
▲

▲

JA
VA

de
ve

lo
per’s journal

JDJ
Readers’

CHOICE

 AWARD

World class

 AWARD

Subscribe to JDJ now
& receive Java Buyer’s Guide

FREE!

Subscribe to JDJ now
& receive Java Buyer’s Guide

FREE!

Only Java Developer’s Journal Readers are

100% Pure Java

The World’s Leading Java Resource

JDJ Java Report Java World JavaPro

Publications Regularly Read by
Java Professionals

In
de

pe
nd

en
t R

ea
de

x
Re

ad
er

 S
ur

ve
y

re
su

lts

18%

39%

3%

84%

www.JavaDevelopersJournal.com or call 914-735-0300

©1999 SYS-CON Publications, Inc. All rights reserved.
JDJ and Java Developer’s Journal are registered trademarks of SYS-CON Publications, Inc.
All other names are trademarks of their respective owners.

Before you advertise in a publication, please ask how many real
Java readers you’re actually reaching!

JDJ is the only publication whose readers are 100%
pure Java developers.

Your ad in Java Developer’s Journal reaches 100% Java
professionals who make decisions to purchase Java related
products and services, not over 40% Visual Basic programmers
who never asked to receive the publication you advertise in!

We built our circulation one subscriber at a time.

That’s one of our secrets why your ad works in JDJ.

Carmen Gonzalez
Vice President,
JDJ Advertising Sales

74 JULY 1999

KL Group Ships JClass 4.0
Enterprise-Ready Java
Components
(Toronto, ON) -- KL Group Inc.
has released its next generation
of 100% Pure Java GUI compo-
nents, JClass 4.0, featuring a sub-
stantially rewritten code base

that pro-
vides opti-
mized sup-
port for
Swing and
Sun
Microsys-
tems’ Java 2.
Key features
include lean-
er compo-
nents, plug-
gable archi-

tecture, new input methods, and
HTML and IDE support.
www.klgroup.com/jclass.

Blue Sky Software
Announces WebHelp3 and
Support for Sun’s JavaHelp
(La Jolla, CA) -- Blue Sky Soft-
ware Corp. has an improved ver-
sion of its WebHelp solution,

WebHelp3, part of
the RoboHELP Office
2000 suite. Based on
Dynamic HTML,
WebHelp3 provides
new functionality
such as full-text
search using
Boolean operators, a

customizable interface and
extremely fast loading.
www.blue-sky.com.

InetSoft Technology Offers
Style Report 2.0
(Piscataway, NJ)
-- Building on
the success of
Style Report 1.x,
InetSoft Tech-
nology intro-
duces Style
Report 2.0 with
JBuilder and
Visual Café integrators. “Our cus-
tomers have been increasingly
asking for an integrated
printing/reporting solution inside
IDE. We are excited to meet those
demands with Style Report 2.0,”
said Luke Liang, the company’s
marketing director.
www.inetsoftcorp.com.

Theory Center Founded
(Boston, MA) -- The Theory Cen-
ter, Inc., was launched on June 15
to provide EJB component-based
solutions that enable Global 2000
companies to quickly turn their e-
business visions into revenue-gen-
erating reality. The reusable, pre-
built components reduce the
development time of new applica-
tions, protect an organization’s
investment in legacy applications
and leverage it to generate new
and incremental income through
the seamless integration of busi-
ness functions among partners,
suppliers and customers.
www.theorycenter.com.

IBM Launches New
Online Resource
(Cupertino, CA) -- IBM
has announced IBM
developerWorks, a fast,
free and central online
resource that allows
developers to tap into

the wealth of information, technol-
ogy and support available from
IBM. Each area -- including news,
tools and code, standards and edu-
cation -- is organized into zones
focusing on Java technology, XML,
security and Web development. A
Linux zone is coming soon.
www.ibm.com/developerWorks.

BetaBeans Service from
Flashline.com Now Available
(Cleveland, OH) -- Flashline.com, a
JavaBeans marketplace,
announces the immediate avail-
ability of BetaBeans, a service for
developers that generates third-
party feedback on the quality and
functionality of submitted Java-
Beans. Developers who list a bean
as a BetaBean receive exposure to
thousands of Flashline’s targeted
visitors. The service accelerates
the cycle for creating high-quality
JavaBeans as suggestions and
improvements can be implement-
ed before the commercial release.
www.flashline.com.

Sales Vision Deploys Jsales
on Linux-Based Operating
System
(Charlotte, NC)
-- Sales Vision,
Inc., announces
the availability of
Jsales on Red Hat
Linux 6.0 running Intel
architecture servers and
clients. Red Hat, Inc., is a
leader in the development of
Linux-based OS solutions. Sales
Vision is currently the only ven-
dor to offer an enterprise-class
CRM solution deployable on
Linux. www.salesvision.com.

Intuitive Systems Offers
New Tool for Linux Platform
(Sunnyvale, CA) -- Intuitive Sys-
tems, Inc., has announced Opti-
mizeit for Linux, the first com-
plete Java performance tool
available for the Linux platform.
A comprehensive profiling tool,
award-winning Optimizeit allows
developers to test and improve

the performance of Java applica-
tions, servlets, applets and Java-
Beans whether they’re running
on a Linux, Microsoft Windows
or Sun Solaris operating system.
www.optimizeit.com.

(Boulder, CO) --
One Realm,
Inc., has
announced ver-
sion 2.0 of its
118n Expeditor
and 118n
Reporter, which detect and
correct software bugs relat-
ed to internationalization
(abbreviated 118n). By eliminat-
ing internationalization bugs
early in the development
process, OneRealm’s new tools
reportedly improve the produc-

tivity of both soft-
ware developers and
globalization teams.
118n Expeditor is
available now for
either C/C++ or Java

software source
code on
Microsoft Win-

dows 95, Windows 98 or Win-
dows NT. 118n Reporter is avail-
able running on Microsoft Win-
dows 95/98/NT or Sun Solaris
2.6. Site licenses are available.
www.onerealm.com

OneRealm Updates Its
Internationalization Tools

(Tualatin, OR) -- Instantiations,
Inc., has introduced the JOVE
Super Optimizing Deployment
Environment, a product family
that extends the company’s
offerings further into e-business
and high-end Java application
solutions. The new products
maximize perfor-
mance and sim-
plify the
deployment
of the back-
end server
applications
that drive

Internet commerce. System per-
formance gains that would nor-
mally take weeks or months of
engineering work can now be
achieved in minutes. The pack-
age includes a sophisticated
software optimization engine, a
native Java compiler, and a scal-
able runtime platform that

enables complex Java
applications to be

deployed as high-
performance,
robust, executable
files. www.instan-
tiations.com.

Instantiations Unveils Java Performance
Product Family for E-Business

75JULY 1999

Bateman
www.batemaninc.com

ADVERTISER URL PH PG

9NETAVENUE, INC. WWW.9NETAVE.COM 888.9NETAVE 49

BATEMAN, INC. WWW.BATEMANINC.COM 805.383.3338 75

BEA WEBLOGIC WWW.WEBLOGIC.BEASYS.COM 800.817.4BEA 2

BLUE SKY SOFTWARE WWW.BLUE-SKY.COM 800.559.4423 13

BORLAND.COM WWW.INTERBASE.COM/PRODUCTS/DEMOJDJ.HTML 800.451.7788 x7183 21

CAREER OPPORTUNITY ADVERTISERS 800.846.7591 76-81

CEREBELLUM SOFTWARE WWW.CEREBELLUMSOFT.COM 888.862.9898 23

CLOUDSCAPE, INC. WWW.CLOUDSCAPE.COM 888.59JAVA1 15

COMPUTER ASSOCIATES INTERNATIONAL, INC. WWW.CAI.COM/ADS/JASMINE/DEV 888.7JASMINE 6

CYRUS INTERSOFT, INC. WWW.CYRUSINTERSOFT.COM 612.331.6600 39

CYSCAPE WWW.CYSCAPE.COM/FREE4J 800.932.6869 16

DEVELOPMENTOR WWW.DEVELOP.COM 800.699.1932 63

ELIXIR TECHNOLOGY WWW.ELIXIR.COM.SG 65 532.4300 35

ENTERPRISESOFT WWW.ENTERPRISESOFT.COM 510.742.6700 11

FINDAHOST.COM WWW.FINDAHOST.COM 440.257.6690 69

HOSTPRO WWW.HOSTPRO.NET 213.252.9779 57

IMI SYSTEMS INC. WWW.IMISYS.COM 800.828.0180 61

INETSOFT TECHNOLOGY CORP WWW.INETSOFTCORP.COM 732.235.0137 47

INSIGNIA SOLUTIONS, INC. WWW.INSIGNIA.COM 800.848.7677 33

INSTANTIATIONS INC. WWW.INSTANTIATIONS.COM 800.808.3737 67

JAVA DEVELOPER’S JOURNAL SUBSCRIBE@SYS-CON.COM 800.513.7111 73-75

JDJ STORE WWW.JDJSTORE.COM 888.303.JAVA 59

ADVERTISER URL PH PG

KL GROUP INC. WWW.KLGROUP.COM/JCLASS/POWER 888.328.9597 52,53

KL GROUP INC. WWW.KLGROUP.COM/CULPRITS 888.328.9597 84

KL GROUP INC. WWW.KLGROUP.COM/TRUTH 888.328.9597 25

NSICOM WWW.NSICOM.COM 97.2.353.31976 63

OBJECT DOMAIN SYSTEMS, INC. WWW.OBJECTDOMAIN.COM 919.461.4904 37

OBJECT INTERNATIONAL SOFTWARE WWW.TOGETHERJ.COM 919.772.9350 41

OBJECTSPACE, INC. WWW.OBJECTSPACE.COM/GO/UNIVERSAL 800.OBJECT1 82,83

OBJCETSPACE, INC. WWW.OBJECTSPACE.COM 888.59JAVA1 45

ONEREALM, INC. WWW.ONEREALM.COM/JDJ 800.633.1072 x23839 7

ORACLE CORPORATION WWW.ORACLE.COM/INFO/32 800.633.1072 x23839 17

PROTOVIEW WWW.PROTOVIEW.COM 800.231.8588 3

RIVERTON SOFTWARE CORPORATION WWW.RIVERTON.COM 781.229.0070 29

SALES VISION WWW.SALESVISION.COM 800.275.4314 51

SLANGSOFT WWW.SLANGSOFT.COM 972.375.18127 55

SOFTWIRED INC. WWW.SOFTWIRED.COM (41)1.445.23101 38

SPECIALIZED SOFTWARE WWW.SPECIALIZEDSOFTWARE.COM/JDJ/ 800.328.2825 x6576 44

SUMMER INTERNET WORLD 99 WWW.INTERNET.COM/REGISTERSUMMER 800.632.5537 65

SUN MICROSYSTEMS, INC. WWW.SUN.COM/SERVICE/SUNED 800.422.8020 4

THE THEORY CENTER WWW.THEORYCENTER.COM 888.843.6791 43

TIDESTONE TECHNOLOGIES, INC. WWW.TIDESTONE.COM 888.880.0665 31

TRAINING/ETC.COM WWW.TRAININGETC.COM 410.531.9953 69

VISUALIZE INC. WWW.VISUALIZEINC.COM 602.861.0999 63

ADVERTISINGINDEX

76 JULY 1999

Employment Ad

77JULY 1999

Employment Ad

78 JULY 1999

Employment Ad

79JULY 1999

Employment Ad

80 JULY 1999

Employment Ad

81JULY 1999

Employment Ad

82 JULY 1999

ObjectSp
www.objectspace

83JULY 1999

pace, Inc.
.com/go/universal

84 JULY 1999

KL Group
www.klgroup.com

